Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jan 24 2020 03:26:54
%S 1,1,1,1,3,2,1,5,9,5,1,7,20,28,14,1,9,35,75,90,42,1,11,54,154,275,297,
%T 132,1,13,77,273,637,1001,1001,429,1,15,104,440,1260,2548,3640,3432,
%U 1430,1,17,135,663,2244,5508,9996,13260,11934
%N Triangle read by rows: T(n,k) = M(2n+1,k,-1), 0 <= k <= n, n >= 0, array M as in A050144.
%C T is a mirror image of the array in A039599.
%H M. W. Coffey, M. C. Lettington, <a href="http://arxiv.org/abs/1510.05402">On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat</a>, arXiv:1510.05402 [math.NT], 2015. See Section 4.
%F Triangle T(n, k) read by rows; given by [1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938. T(n, k) = C(2n, k)*(2n-2k+1)/(2n-k+1). - _Philippe Deléham_, Dec 07 2003
%F Sum_{k=0..min(m, n)} T(m, m-k)*T(n, n-k) = A000108(m+n); A000108: Catalan numbers. - _Philippe Deléham_, Dec 30 2003
%F T(n, k) = 0 if n < k, T(n, n)= A000108(n) and for n > k: T(n, k) = Sum_{j=0..k} T(n-1-j, k-j)*A000108(j+1). - _Philippe Deléham_, Feb 03 2004
%F T(n,k)= Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k). - _Philippe Deléham_, May 05 2007
%F T(2n,n) = A126596(n). - _Philippe Deléham_, Nov 23 2011
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 3, 2;
%e 1, 5, 9, 5;
%e 1, 7, 20, 28, 14;
%e 1, 9, 35, 75, 90, 42;
%e 1, 11, 54, 154, 275, 297, 132;
%Y Cf. A039599, A084938.
%K nonn,tabl
%O 0,5
%A _Clark Kimberling_