login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126596
a(n) = binomial(4*n,n)*(2*n+1)/(3*n+1).
7
1, 3, 20, 154, 1260, 10659, 92092, 807300, 7152444, 63882940, 574221648, 5188082354, 47073334100, 428634152730, 3914819231400, 35848190542920, 329007937216860, 3025582795190340, 27872496751392496, 257172019222240200, 2376196095585231920, 21983235825545286435
OFFSET
0,2
COMMENTS
Number of standard Young tableaux of shape [3n,n]. Also the number of binary words with 3n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 3 words are: 1011, 1101, 1110. - Alois P. Heinz, Aug 15 2012
LINKS
FORMULA
a(n) = A039599(2*n,n).
a(n) = (2*n+1)*A002293(n). - Mark van Hoeij, Nov 17 2011
a(n) = A208983(2*n+1). - Reinhard Zumkeller, Mar 04 2012
a(n) = A005810(n) * A005408(n) / A016777(n). - Reinhard Zumkeller, Mar 04 2012
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(2*n+1). - Ilya Gutkovskiy, Nov 01 2017
Recurrence: 3*n*(3*n-1)*(3*n+1)*a(n) = 8*(2*n+1)*(4*n-3)*(4*n-1)*a(n-1). - Vaclav Kotesovec, Feb 03 2018
MAPLE
seq((2*n+1)*binomial(4*n, n)/(3*n+1), n=0..22); # Emeric Deutsch, Mar 27 2007
MATHEMATICA
Table[(Binomial[4n, n](2n+1))/(3n+1), {n, 0, 30}] (* Harvey P. Dale, Feb 06 2016 *)
PROG
(Magma) [Binomial(4*n, n)*(2*n+1)/(3*n+1): n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
(Haskell)
a126596 n = a005810 n * a005408 n `div` a016777 n
-- Reinhard Zumkeller, Mar 04 2012
CROSSREFS
Column k=3 of A214776.
Sequence in context: A336283 A091172 A091168 * A074560 A123355 A371815
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 13 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 27 2007
STATUS
approved