This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071976 Number of lists of length n from {0..9} summing to n but not beginning with 0. 6
 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48619, 184735, 705222, 2702609, 10390940, 40062132, 154830696, 599641425, 2326640877, 9042327525, 35194002709, 137160956815, 535193552973, 2090558951396, 8174176541450, 31990402045260 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Number of n-digit numbers with digit sum n. Middle diagonal of A213651. - Miquel Cerda, Aug 11 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..1100 FORMULA Equals binomial(2n-2, n-1) for n <= 9, by the stars and bars argument. [To get such a number take n boxes in which the leftmost box contains a 1 and the rest are empty. Distribute the remaining n-1 1's into the n boxes subject to the constraint that no box contains more than 9 1's. This can be done in binomial(2n-2, n-1) ways for n <= 9.] Coefficient of x^n in T^n - T^(n-1), where T = 1+x+...+x^9. - Robert Israel, Apr 06 2016 EXAMPLE a(3) = 6 as there are six three-digit numbers with digit sum 3: 102, 111, 120, 201, 210, 300. a(10) = binomial(18,9)-1; a(11) = binomial(20,10)-21; a(12) = binomial(22,11)-210. MAPLE T:= add(x^i, i=0..9): seq(coeff(T^n - T^(n-1), x, n), n=1..25); # Robert Israel, Apr 06 2016 MATHEMATICA Do[c = 0; k = 10^n; l = 10^(n + 1) - 1; While[k < l, If[ Plus @@ IntegerDigits[k] == n + 1, c++ ]; k++ ]; Print[c], {n, 0, 7}] PROG (PARI) a(n)=local(y=(x^10-1)/(x-1)); if(n<1, 0, polcoeff((y-1)*y^(n-1), n)) CROSSREFS Different from A000984. Number of n-digit entries in A061384. Sequence in context: A056616 A065346 A302645 * A302646 A000984 A087433 Adjacent sequences:  A071973 A071974 A071975 * A071977 A071978 A071979 KEYWORD nonn,base AUTHOR Amarnath Murthy, Jun 18 2002 EXTENSIONS Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 20 2002 More terms from Vladeta Jovovic, Jun 21 2002 More terms from John W. Layman, Jun 22 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 02:34 EST 2019. Contains 329323 sequences. (Running on oeis4.)