login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284016
a(-1)=-1; a(n) = 2*A000108(n) for n >= 0.
6
-1, 2, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904, 36734706144304, 139067101832008, 527495903500720, 2004484433302736
OFFSET
-1,2
COMMENTS
There exists a set of Ramanujan-Sato series using this sequence.
a(n-1) = binomial(2n,n)/(2n-1) is the number of walks on a line that start and end at origin after 2n steps, not touching origin at intermediate stages. - Robert FERREOL, Aug 24 2019
From Bernard Schott, Apr 18 2020: (Start)
If E_n is the set of sequences with 2n digits composed with n digits 0 and n digits 1, then #E_n = binomial(2n,n). Now, if F_n is the subset of E_n composed of sequences where number of 0's = number of 1's for the first time at index 2n, then #F_n = a(n-1) = binomial(2n,n)/(2n-1) [see reference for proof].
Example: For n = 2, E_2 = {(0,0,1,1), (0,1,0,1), (1,0,1,0), (1,1,0,0), (0,1,1,0), (1,0,0,1)} with #E_2 = 6, but, F_2 = {(0,0,1,1), (1,1,0,0)} and #F_2 = a(1) = 2. (End)
REFERENCES
Patrice Tauvel, Exercices d'Algèbre Générale et d'Arithmétique, Dunod, 2004, Exercice 11, p. 296.
LINKS
FORMULA
a(n) = -A002420(n+1).
a(n) = (2*4^n*Gamma(n+1/2))/(sqrt(Pi)*Gamma(n+2)) for n >= -1. - Ralf Steiner, Apr 02 2017
a(n) = binomial(2*n+2, n+1) / (2*n+1) = 4*binomial(2*n, n) - binomial(2*n+2, n+1) for all n in Z. - Michael Somos, Jan 26 2018
a(n) = A228403(n) for n > 1 (essentially twice the Catalan numbers). - Georg Fischer, Oct 23 2018
From Stefano Spezia, Aug 24 2019: (Start)
G.f. for n >= 0: (1 - sqrt(1 - 4*x))/x.
E.g.f. for n >= 0: 2*(exp(2*x))*(I_{0}(2*x) - I_{1}(2*x)) where I_{k}(x) is the modified Bessel function of the first kind. (End)
Sum_{n>=-1} 1/a(n) = 2*Pi/(9*sqrt(3)). - Amiram Eldar, Jan 18 2025
EXAMPLE
The a(3)=10 8-step walks starting from and ending at the origin are [0, -1, -2, -3, -4, -3, -2, -1, 0], [0, -1, -2, -3, -2, -3, -2, -1, 0], [0, -1, -2, -3, -2, -1, -2, -1, 0], [0, -1, -2, -1, -2, -3, -2, -1, 0], [0, -1, -2, -1, -2, -1, -2, -1, 0], [0, 1, 2, 1, 2, 1, 2, 1, 0], [0, 1, 2, 1, 2, 3, 2, 1, 0], [0, 1, 2, 3, 2, 1, 2, 1, 0], [0, 1, 2, 3, 2, 3, 2, 1, 0], [0, 1, 2, 3, 4, 3, 2, 1, 0]. - Robert FERREOL, Aug 24 2019
MAPLE
seq(binomial(2*n+2, n+1) / (2*n+1), n=-1..20); # Robert FERREOL, Aug 24 2019
MATHEMATICA
Prepend[Table[(2*CatalanNumber[n]), {n, 0, 20}], -1]
PROG
(PARI) for(n=-1, 25, print1(round((2*4^n*gamma(n+1/2))/(sqrt(Pi)*gamma(n+2))), ", ")) \\ G. C. Greubel, Apr 11 2017
(PARI) {a(n) = binomial(2*n+2, n+1) / (2*n+1)}; /* Michael Somos, Jan 26 2018 */
(Magma) [Binomial(2*n+2, n+1) / (2*n+1): n in [-1..30]]; // Vincenzo Librandi, Jan 27 2018
CROSSREFS
Essentially the same as A262543 and A068875.
Sequence in context: A078801 A309159 A002420 * A112556 A254400 A054100
KEYWORD
sign,changed
AUTHOR
Ralf Steiner, Mar 28 2017
STATUS
approved