login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(-1)=-1; a(n) = 2*A000108(n) for n >= 0.
6

%I #88 Jan 19 2025 01:27:44

%S -1,2,2,4,10,28,84,264,858,2860,9724,33592,117572,416024,1485800,

%T 5348880,19389690,70715340,259289580,955277400,3534526380,13128240840,

%U 48932534040,182965127280,686119227300,2579808294648,9723892802904,36734706144304,139067101832008,527495903500720,2004484433302736

%N a(-1)=-1; a(n) = 2*A000108(n) for n >= 0.

%C There exists a set of Ramanujan-Sato series using this sequence.

%C a(n-1) = binomial(2n,n)/(2n-1) is the number of walks on a line that start and end at origin after 2n steps, not touching origin at intermediate stages. - _Robert FERREOL_, Aug 24 2019

%C From _Bernard Schott_, Apr 18 2020: (Start)

%C If E_n is the set of sequences with 2n digits composed with n digits 0 and n digits 1, then #E_n = binomial(2n,n). Now, if F_n is the subset of E_n composed of sequences where number of 0's = number of 1's for the first time at index 2n, then #F_n = a(n-1) = binomial(2n,n)/(2n-1) [see reference for proof].

%C Example: For n = 2, E_2 = {(0,0,1,1), (0,1,0,1), (1,0,1,0), (1,1,0,0), (0,1,1,0), (1,0,0,1)} with #E_2 = 6, but, F_2 = {(0,0,1,1), (1,1,0,0)} and #F_2 = a(1) = 2. (End)

%D Patrice Tauvel, Exercices d'Algèbre Générale et d'Arithmétique, Dunod, 2004, Exercice 11, p. 296.

%H G. C. Greubel, <a href="/A284016/b284016.txt">Table of n, a(n) for n = -1..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Ramanujan%E2%80%93Sato_series#Similar_series">Ramanujan-Sato series</a>.

%F a(n) = -A002420(n+1).

%F a(n) = (2*4^n*Gamma(n+1/2))/(sqrt(Pi)*Gamma(n+2)) for n >= -1. - _Ralf Steiner_, Apr 02 2017

%F a(n) = binomial(2*n+2, n+1) / (2*n+1) = 4*binomial(2*n, n) - binomial(2*n+2, n+1) for all n in Z. - _Michael Somos_, Jan 26 2018

%F a(n) = A228403(n) for n > 1 (essentially twice the Catalan numbers). - _Georg Fischer_, Oct 23 2018

%F From _Stefano Spezia_, Aug 24 2019: (Start)

%F G.f. for n >= 0: (1 - sqrt(1 - 4*x))/x.

%F E.g.f. for n >= 0: 2*(exp(2*x))*(I_{0}(2*x) - I_{1}(2*x)) where I_{k}(x) is the modified Bessel function of the first kind. (End)

%F Sum_{n>=-1} 1/a(n) = 2*Pi/(9*sqrt(3)). - _Amiram Eldar_, Jan 18 2025

%e The a(3)=10 8-step walks starting from and ending at the origin are [0, -1, -2, -3, -4, -3, -2, -1, 0], [0, -1, -2, -3, -2, -3, -2, -1, 0], [0, -1, -2, -3, -2, -1, -2, -1, 0], [0, -1, -2, -1, -2, -3, -2, -1, 0], [0, -1, -2, -1, -2, -1, -2, -1, 0], [0, 1, 2, 1, 2, 1, 2, 1, 0], [0, 1, 2, 1, 2, 3, 2, 1, 0], [0, 1, 2, 3, 2, 1, 2, 1, 0], [0, 1, 2, 3, 2, 3, 2, 1, 0], [0, 1, 2, 3, 4, 3, 2, 1, 0]. - _Robert FERREOL_, Aug 24 2019

%p seq(binomial(2*n+2, n+1) / (2*n+1),n=-1..20); # _Robert FERREOL_, Aug 24 2019

%t Prepend[Table[(2*CatalanNumber[n]), {n, 0, 20}], -1]

%o (PARI) for(n=-1, 25, print1(round((2*4^n*gamma(n+1/2))/(sqrt(Pi)*gamma(n+2))), ", ")) \\ _G. C. Greubel_, Apr 11 2017

%o (PARI) {a(n) = binomial(2*n+2, n+1) / (2*n+1)}; /* _Michael Somos_, Jan 26 2018 */

%o (Magma) [Binomial(2*n+2, n+1) / (2*n+1): n in [-1..30]]; // _Vincenzo Librandi_, Jan 27 2018

%Y Cf. A000108, A002420, A228403.

%Y Essentially the same as A262543 and A068875.

%K sign,changed

%O -1,2

%A _Ralf Steiner_, Mar 28 2017