login
A284014
Numbers k such that {k + 2, k + 4} and {k^2 + 2, k^2 + 4} are both twin prime pairs.
1
1, 3, 15, 57, 147, 2085, 6687, 6957, 11055, 15267, 17385, 17577, 20505, 20637, 23667, 26247, 31077, 31317, 32115, 32967, 34497, 39225, 47775, 52065, 53715, 55335, 56205, 58365, 62187, 63585, 66567, 67215, 70875, 77235, 77475, 82005, 85827, 89595, 89817, 107505
OFFSET
1,2
COMMENTS
After a(1), all the terms are multiples of 3.
After a(2), all the terms are congruent to 5 or 7 (mod 10).
LINKS
EXAMPLE
a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^2 + 2 = 11, 3^2 + 4 = 13} are twin prime pairs.
a(3) = 15, {15 + 2 = 17, 15 + 4 = 19} and {15^2 + 2 = 227, 15^2 + 4 = 229} are twin prime pairs.
MATHEMATICA
Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] &]
PROG
(PARI) for(n=1, 100000, 2; if(isprime(n+2) && isprime(n+4) && isprime(n^2+2) &&isprime(n^2+4), print1(n, ", ")))
(Magma) [n: n in [0..100000] | IsPrime(n+2) and IsPrime(n+4) and IsPrime(n^2+2) and IsPrime(n^2+4)];
(Scheme, with Antti Karttunen's IntSeq-library)
(define A284014 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 (+ n 2))) (= 1 (A010051 (+ n 4))) (= 1 (A010051 (+ (* n n) 2))) (= 1 (A010051 (+ (* n n) 4)))))))
;; Antti Karttunen, Apr 15 2017
CROSSREFS
Appears to be the intersection of A086381 and A256388, but that may be unproven.
Sequence in context: A367520 A346542 A033853 * A049187 A049161 A358685
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Mar 18 2017
STATUS
approved