login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213423
Number of partitions of n in which all parts are >= 2 and the largest part occurs at least four times.
1
1, 0, 1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 6, 3, 7, 5, 11, 7, 13, 11, 19, 15, 25, 21, 34, 30, 44, 42, 60, 56, 78, 78, 105, 103, 137, 139, 181, 186, 234, 246, 309, 323, 399, 425, 519, 554, 670, 721, 864, 934, 1108, 1206, 1425, 1548, 1816, 1989, 2318, 2539, 2945, 3235, 3738, 4111, 4726
OFFSET
8,5
FORMULA
a(n) = p(n)-2*p(n-1)+p(n-3)+p(n-4)-2*p(n-6)+p(n-7), where p(n) = A000041(n).
G.f.: (1-x)*Product_{k>3} 1/(1-x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (24*sqrt(3)*n^3). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{n >= 1} q^(4*n+4)/Product_{k = 1..n} 1- q^(k+1). - Peter Bala, Dec 01 2024
EXAMPLE
For n = 16 we have three partitions: {[4+4+4+4], [3+3+3+3+2+2], [2+2+2+2+2+2+2+2]}, so a(16) = 3.
MAPLE
seq(combinat:-numbpart(n)-2*combinat:-numbpart(n-1)+combinat:-numbpart(n-3)+combinat:-numbpart(n-4)-2*combinat:-numbpart(n-6)+combinat:-numbpart(n-7), n=8..70)
CROSSREFS
Cf. A000041.
Sequence in context: A029221 A304034 A029183 * A339374 A265753 A138110
KEYWORD
nonn
AUTHOR
Mircea Merca, Jun 11 2012
STATUS
approved