login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097040
a(n) = 2*sum(C(n,2k+1)*F(2k), k=0..floor((n-1)/2)), where F(n) are Fibonacci numbers A000045.
1
0, 0, 2, 8, 26, 76, 212, 576, 1542, 4092, 10802, 28424, 74648, 195808, 513242, 1344672, 3521994, 9223284, 24151052, 63235040, 165562430, 433465780, 1134856802, 2971140048, 7778620656, 20364814656, 53315973362, 139583348216
OFFSET
1,3
COMMENTS
Create a triangle with first column T(n,1)=A000045(n) for n=0,1,2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). The sum of all terms for the first n+1 rows of this triangle=a(n+2). The sum of the terms in row(n+1)= 0, 2, 6, 18, 50, 136, 364...with partial sums of these sums duplicating this sequence 0, 2, 8, 26, 76, 212, 576... - J. M. Bergot, Dec 19 2012
FORMULA
a(n) = F(2n-1)-F(n+1) = 2*A056014(n).
G.f. -2*x^3 / ( (x^2-3*x+1)*(x^2+x-1) ). - R. J. Mathar, Jan 08 2013
MATHEMATICA
f[n_] := f[n] = f[n - 1] + f[n - 2]; f[0] = 0; f[1] = 1; Table[2 Sum[Binomial[n, 2k + 1]f[2k], {k, 0, Floor[(n - 1)/2]}], {n, 1, 30}]
Table[Fibonacci[2n-1]-Fibonacci[n+1], {n, 30}] (* Harvey P. Dale, Oct 05 2011 *)
LinearRecurrence[{4, -3, -2, 1}, {0, 0, 2, 8}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
CROSSREFS
Sequence in context: A167826 A301995 A325926 * A302237 A224289 A124721
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004
STATUS
approved