login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*sum(C(n,2k+1)*F(2k), k=0..floor((n-1)/2)), where F(n) are Fibonacci numbers A000045.
1

%I #16 Jun 13 2015 00:51:23

%S 0,0,2,8,26,76,212,576,1542,4092,10802,28424,74648,195808,513242,

%T 1344672,3521994,9223284,24151052,63235040,165562430,433465780,

%U 1134856802,2971140048,7778620656,20364814656,53315973362,139583348216

%N a(n) = 2*sum(C(n,2k+1)*F(2k), k=0..floor((n-1)/2)), where F(n) are Fibonacci numbers A000045.

%C Create a triangle with first column T(n,1)=A000045(n) for n=0,1,2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). The sum of all terms for the first n+1 rows of this triangle=a(n+2). The sum of the terms in row(n+1)= 0, 2, 6, 18, 50, 136, 364...with partial sums of these sums duplicating this sequence 0, 2, 8, 26, 76, 212, 576... - _J. M. Bergot_, Dec 19 2012

%H Harvey P. Dale, <a href="/A097040/b097040.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-2,1).

%F a(n) = F(2n-1)-F(n+1) = 2*A056014(n).

%F G.f. -2*x^3 / ( (x^2-3*x+1)*(x^2+x-1) ). - _R. J. Mathar_, Jan 08 2013

%t f[n_] := f[n] = f[n - 1] + f[n - 2]; f[0] = 0; f[1] = 1; Table[2 Sum[Binomial[n, 2k + 1]f[2k], {k, 0, Floor[(n - 1)/2]}], {n, 1, 30}]

%t Table[Fibonacci[2n-1]-Fibonacci[n+1],{n,30}] (* _Harvey P. Dale_, Oct 05 2011 *)

%t LinearRecurrence[{4, -3, -2, 1}, {0, 0, 2, 8}, 29] (* _Robert G. Wilson v_, Dec 26 2012 *)

%K easy,nonn

%O 1,3

%A Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004