login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. = (1 + 4 * g.f. for A096661)/(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)).
3

%I #24 Feb 21 2021 04:10:25

%S 1,2,0,4,2,4,4,8,8,10,12,16,20,24,28,36,42,48,60,72,84,100,116,136,

%T 160,186,216,252,292,336,388,448,512,588,672,768,878,1000,1136,1292,

%U 1464,1656,1876,2120,2388,2696,3032,3408,3832,4298,4816,5396,6036,6744,7532,8404

%N G.f. = (1 + 4 * g.f. for A096661)/(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)).

%C a(0) = 1; for n>0, a(n) = 2*A026832(n) (i.e., essentially Fine's numbers L(n) multiplied by 2).

%C The number of odd-even overpartitions of n: an odd-even overpartition of n is an overpartition of n with the smallest part odd and such that the difference between successive parts is odd if the smaller part is nonoverlined and even otherwise - see Yang 2017. - _Peter Bala_, Mar 29 2017

%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).

%H Vaclav Kotesovec, <a href="/A097042/b097042.txt">Table of n, a(n) for n = 0..1000</a>

%H Min-Joo Jang, <a href="https://arxiv.org/abs/1703.01837">Asymptotic behavior of odd-even partitions</a>, arXiv:1703.01837v1 [math.NT], 2017.

%F a(n) ~ 1/(3^(5/4)*n^(3/4))*exp(Pi*sqrt(n/3)) [Jang 2017]. - _Peter Bala_, Mar 29 2017

%F Conjectural g.f.: 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)/( (1 + q^n) * Product_{k = 1..n} 1 - q^k ). - _Peter Bala_, Feb 19 2021

%t nmax = 60; Flatten[{1, Rest[CoefficientList[Series[2*Sum[x^(2*k - 1) QPochhammer[-x^(2*k), x], {k, nmax}], {x, 0, nmax}], x]]}] (* _Vaclav Kotesovec_, Mar 28 2017 *)

%Y Cf. A096661, A026832, A179049.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Sep 15 2004

%E Name corrected by _Peter Bala_, Feb 19 2021