login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092265 Sum of smallest parts of all partitions of n into distinct parts. 10
1, 2, 4, 5, 8, 10, 14, 16, 23, 26, 34, 40, 50, 58, 74, 83, 102, 120, 142, 164, 198, 226, 266, 308, 359, 412, 482, 548, 634, 730, 834, 950, 1094, 1240, 1416, 1609, 1826, 2068, 2350, 2648, 2994, 3382, 3806, 4280, 4826, 5408, 6070, 6806, 7619, 8522, 9534, 10632 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

FORMULA

G.f.: sum(n>=1, -1 + prod(k>=n, 1+x^k ) ).

G.f.: sum(n>=1, n*x^n*prod(k>=n+1,1+x^k)) - Joerg Arndt, Jan 29 2011

G.f.: sum(k>=1, x^(k*(k+1)/2)/(1-x^k)/prod(i=1..k, 1-x^i ) ). - Vladeta Jovovic, Aug 10 2004

Conjecture: a(n) = A034296(n) + A237665(n+1). - George Beck, May 06 2017

a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1,

     `if`(i>n, 0, b(n, i+1)+b(n-i, i+1)))

    end:

a:= n-> add(j*b(n-j, j+1), j=1..n):

seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i + 1] + b[n - i, i + 1]]]; a[n_] := Sum[j*b[n - j, j + 1], {j, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-Fran├žois Alcover, Jan 21 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A046746, A005895, A006128, A092319, A092316, A034296, A237665.

Cf. A026832, A336902, A336903.

Sequence in context: A067941 A259711 A182195 * A262937 A249508 A163295

Adjacent sequences:  A092262 A092263 A092264 * A092266 A092267 A092268

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Feb 14 2004

EXTENSIONS

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 13:51 EDT 2021. Contains 346391 sequences. (Running on oeis4.)