Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 May 14 2022 13:38:53
%S 0,1,0,2,1,2,2,4,4,5,6,8,10,12,14,18,21,24,30,36,42,50,58,68,80,93,
%T 108,126,146,168,194,224,256,294,336,384,439,500,568,646,732,828,938,
%U 1060,1194,1348,1516,1704,1916,2149,2408,2698,3018,3372,3766,4202,4682
%N Number of partitions of n into distinct parts, the least being odd.
%C Fine's numbers L(n).
%C Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(7)=4 because we have [3,2,1,1], [2,2,2,1], [2,1,1,1,1,1] and [1,1,1,1,1,1,1]. - _Emeric Deutsch_, Mar 29 2006
%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).
%H Alois P. Heinz, <a href="/A026832/b026832.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: Sum_{k>=1} ((-1)^(k+1)*(-1+Product_{i>=k} (1+x^i))). - _Vladeta Jovovic_, Aug 26 2003
%F G.f.: Sum_{ k >= 1 } x^(k*(k+1)/2)/((1+x^k)*Product_{i=1..k} (1-x^i) ). - _Vladeta Jovovic_, Aug 10 2004
%F (1 + Sum_{n >= 1} a(n)q^n )*(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)) = Sum_{n >= 1} (-1)^n*q^((3*n^2+n)/2)/(1+q^n). [Fine]
%F G.f.: Sum_{k>=1} x^(2k-1)*Product_{j>=2k} (1 + x^j). - _Emeric Deutsch_, Mar 29 2006
%F a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 09 2019
%e a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
%p g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # _Emeric Deutsch_, Mar 29 2006
%p # second Maple program:
%p b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, b(n, i-1)+
%p `if`(i=n and i::odd, 1, 0)+`if`(i<n, b(n-i, min(n-i, i-1)), 0))
%p end:
%p a:= n-> `if`(n=0, 0, b(n$2)):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 01 2019
%t mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]] (* _Jean-François Alcover_, Apr 05 2011, after _Emeric Deutsch_ *)
%t Join[{0},Table[Length[Select[IntegerPartitions[n],OddQ[#[[-1]]]&&Max[Tally[#][[All,2]]] == 1&]],{n,60}]] (* _Harvey P. Dale_, May 14 2022 *)
%o (Haskell)
%o a026832 n = p 1 n where
%o p _ 0 = 1
%o p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
%o -- _Reinhard Zumkeller_, Jun 14 2012
%Y Cf. A026804, A026805, A026807, A026833, A092265, A096661, A097042.
%Y Cf. A000009, A096765.
%K nonn,nice
%O 0,4
%A _Clark Kimberling_
%E More terms from _Emeric Deutsch_, Mar 29 2006
%E a(0)=0 prepended by _Alois P. Heinz_, Feb 01 2019