login
A153263
a(n) = A014217(n+3) - A014217(n).
2
3, 5, 9, 13, 23, 35, 59, 93, 153, 245, 399, 643, 1043, 1685, 2729, 4413, 7143, 11555, 18699, 30253, 48953, 79205, 128159, 207363, 335523, 542885, 878409, 1421293, 2299703, 3720995, 6020699, 9741693, 15762393, 25504085, 41266479, 66770563
OFFSET
0,1
COMMENTS
The least significant digits are a sequence of period length 4: 3,5,9,3.
One could extend A014217 using its recurrence to define A014217(-1)=-1. This would add a(-1)=3 here by definition, and the least significant digits would still follow the (same, wrapped) period of length 4: 3,3,5,9.
FORMULA
a(2n+2) = a(2n+1) + a(2n) + 1. a(2n+3) = a(2n+2) + a(2n+1) - 1.
From R. J. Mathar, Feb 07 2009, Apr 18 2009: (Start)
a(n) = 2*a(n-2) + a(n-3) = (-1)^n + 2*A000032(n+1).
G.f.: (3+5x+3x^2)/ ((1+x)(1-x-x^2)). (End)
a(n) + a(n+1) = A022112(n+2). - R. J. Mathar, Feb 25 2013
a(n) = ((-2)^n + (1 - sqrt(5))^(1+n) + (1 + sqrt(5))^(1+n))/2^n. - Stefano Spezia, Dec 25 2021
MATHEMATICA
LinearRecurrence[{0, 2, 1}, {3, 5, 9}, 40] (* Harvey P. Dale, Jun 23 2022 *)
CROSSREFS
Cf. A022112.
Sequence in context: A052282 A001993 A284829 * A295140 A144933 A133033
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 22 2008
EXTENSIONS
More terms from R. J. Mathar, Feb 07 2009
Edited by R. J. Mathar, Apr 18 2009
STATUS
approved