login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001986
Let p be the n-th odd prime. Then a(n) is the least prime congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.
(Formerly M5073 N2195)
5
19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 222643, 1333963, 1333963, 2404147, 2404147, 20950603, 51599563, 51599563, 96295483, 96295483, 146161723, 1408126003, 3341091163, 3341091163, 3341091163, 52947440683, 52947440683, 52947440683, 193310265163
OFFSET
1,1
COMMENTS
Numbers so far are all congruent to 19 mod 24. - Ralf Stephan, Jul 07 2003
All terms are congruent to 19 mod 24. - Jianing Song, Feb 17 2019
Also a(n) is the least prime r congruent to 3 mod 8 such that the first n odd primes are quadratic nonresidues modulo r. Note that r == 3 (mod 8) implies 2 is a quadratic nonresidue modulo r. See A001992 for the case where r == 5 (mod 8). - Jianing Song, Feb 19 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael John Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995.
Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
PROG
(PARI) isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(-p, q) != -1, return (0)); ); return (1); }
a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 3, if (isok(p, oddpn), return (p)); ); ); } \\ Michel Marcus, Oct 17 2017
CROSSREFS
Cf. A001992 (the congruent to 5 mod 8 case), A094851, A094852, A094853.
See A094841, A094842, A094843, A094844 for the case where the terms are not restricted to the primes.
Sequence in context: A139580 A156897 A094841 * A270123 A139811 A095101
KEYWORD
nonn
EXTENSIONS
Revised by N. J. A. Sloane, Jun 14 2004
a(28)-a(30) from Jinyuan Wang, Apr 09 2020
STATUS
approved