

A081420


Let f(1)=f(2)=1, f(k)=f(k1)+f(k2)+ (k (mod n)). Then f(k)=floor(r(n)*F(k))+g(k) where F(k) denotes the kth Fibonacci number and g(k) a function becoming periodic. Sequence depends on r(n) which is the largest positive root of : a(3n2)*X^2a(3n1)*X+a(3n)=0.


0



0, 1, 1, 1, 1, 1, 4, 18, 19, 5, 25, 31, 11, 64, 89, 4, 24, 31, 29, 184, 236, 45, 285, 319, 76, 486, 499, 121, 759, 639, 199, 1230, 855, 20, 120, 59, 521, 3038, 916, 841, 4727, 341, 1364, 7386, 1189, 2205, 11445, 4889
(list;
graph;
refs;
listen;
history;
text;
internal format)




