login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153488
Triangle T(n, k) = prime(n)^k - 2^(2*k-3) with T(n, 1) = prime(n), read by rows.
1
2, 3, 7, 5, 23, 117, 7, 47, 335, 2369, 11, 119, 1323, 14609, 160923, 13, 167, 2189, 28529, 371165, 4826297, 17, 287, 4905, 83489, 1419729, 24137057, 410336625, 19, 359, 6851, 130289, 2475971, 47045369, 893869691, 16983554849, 23, 527, 12159, 279809, 6436215, 148035377, 3404823399, 78310977089, 1801152628695
OFFSET
1,1
COMMENTS
Row sums are: {2, 10, 145, 2758, 176985, 5228360, 435982109, 17927083398, 1883023193293, 435732491457588, ...}
FORMULA
T(n, k) = prime(n)^k - 2^(2*k - 3) with T(n, 1) = prime(n).
EXAMPLE
Triangle begins as:
2;
3, 7;
5, 23, 117;
7, 47, 335, 2369;
11, 119, 1323, 14609, 160923;
13, 167, 2189, 28529, 371165, 4826297;
17, 287, 4905, 83489, 1419729, 24137057, 410336625;
19, 359, 6851, 130289, 2475971, 47045369, 893869691, 16983554849;
MAPLE
A153488:= (n, k) -> `if`(k=1, ithprime(n), ithprime(n)^k - 2^(2*k-3));
seq(seq(A153488(n, k), k = 1..n), n = 1..12); # G. C. Greubel, Mar 02 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==1, Prime[n], Prime[n]^k -2^(2*k-3)];
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
PROG
(Sage)
def A153488(n, k): return nth_prime(n)^k - 2^(2*k-3)*(1- kronecker_delta(k, 1))
flatten([[A153488(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 02 2021
(Magma)
A153488:= func< n, k | k eq 1 select NthPrime(n) else NthPrime(n)^k - 2^(2*k-3) >;
[A153488(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 02 2021
CROSSREFS
Sequence in context: A051860 A351494 A155766 * A275115 A085399 A063696
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 27 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 02 2021
STATUS
approved