login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153489
Triangular recursive sequence: a(n,k)=(n - k + 1)A(n - 1, k - 1) + (k)* A(n - 1, k) - 18*A(n - 2, k - 1).
0
2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 49, 60, 49, 2, 2, 115, 126, 126, 115, 2, 2, 217, 253, 514, 253, 217, 2, 2, 415, 506, 1264, 1264, 506, 415, 2, 2, 810, 517, 3538, 3388, 3538, 517, 810, 2, 2, 1602, 561, 8663, 15416, 15416, 8663, 561, 1602, 2
OFFSET
1,1
COMMENTS
Row sums are:
{2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 52488,...}.
FORMULA
a(n,k)=(n - k + 1)A(n - 1, k - 1) + (k)* A(n - 1, k) - 18*A(n - 2, k - 1).
EXAMPLE
{2},
{3, 3},
{2, 14, 2},
{2, 25, 25, 2},
{2, 49, 60, 49, 2},
{2, 115, 126, 126, 115, 2},
{2, 217, 253, 514, 253, 217, 2},
{2, 415, 506, 1264, 1264, 506, 415, 2},
{2, 810, 517, 3538, 3388, 3538, 517, 810, 2},
{2, 1602, 561, 8663, 15416, 15416, 8663, 561, 1602, 2}
MATHEMATICA
Clear[t, n, m, A];
A[2, 1] := A[2, 2] = 3;
A[3, 2] = 14;
A[4, 2] = 25; A[4, 3] = 25;
A[5, 2] = 49; A[5, 3] = 60; A[5, 4] = 49;
A[6, 2] = 115; A[6, 3] = 126; A[6, 4] = 126; A[6, 5] = 115;
A[7, 2] = 217; A[7, 3] = 253; A[7, 4] = 514; A[7, 5] = 253; A[7, 6] = 217;
A[8, 2] = 415; A[8, 3] = 506; A[8, 4] = 1264; A[8, 5] = 1264; A[8, 6] = 506; A[8, 7] = 415;
A[n_, 1] := 2; A[n_, n_] := 2;
A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + (k)* A[n - 1, k] - 18*A[ n - 2, k - 1];
Table[Table[A[n, m], {m, 1, n}], {n, 1, 10}]
Flatten[%] Table[Sum[A[n, m], {m, 1, n}], {n, 1, 10}];
Table[Sum[A[n, m], {m, 1, n}]/(2*3^(n - 1)), {n, 1, 10}]:
CROSSREFS
Sequence in context: A153283 A153288 A153479 * A153310 A155688 A215490
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, Dec 27 2008
STATUS
approved