The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153310 Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x); Row sums are 2*3^n. 0
 2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 54, 77, 27, 2, 2, 137, 212, 104, 29, 2, 2, 382, 592, 316, 133, 31, 2, 2, 1113, 1703, 908, 449, 164, 33, 2, 2, 3302, 5003, 2611, 1357, 613, 197, 35, 2, 2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2, 2, 29550, 44414, 22480, 11582 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums: {2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}. LINKS FORMULA p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x). EXAMPLE {2}, {3, 3}, {2, 14, 2}, {2, 25, 25, 2}, {2, 54, 77, 27, 2}, {2, 137, 212, 104, 29, 2}, {2, 382, 592, 316, 133, 31, 2}, {2, 1113, 1703, 908, 449, 164, 33, 2}, {2, 3302, 5003, 2611, 1357, 613, 197, 35, 2}, {2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2}, {2, 29550, 44414, 22480, 11582, 5938, 2780, 1042, 269, 39, 2} MATHEMATICA Clear[p, n, m, x]; p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2; p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 1)*x); Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A153288 A153479 A153489 * A155688 A215490 A153592 Adjacent sequences:  A153307 A153308 A153309 * A153311 A153312 A153313 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula, Dec 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 20:36 EDT 2021. Contains 343652 sequences. (Running on oeis4.)