login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = prime(n)^k - 2^(2*k-3) with T(n, 1) = prime(n), read by rows.
1

%I #10 Mar 03 2021 06:12:10

%S 2,3,7,5,23,117,7,47,335,2369,11,119,1323,14609,160923,13,167,2189,

%T 28529,371165,4826297,17,287,4905,83489,1419729,24137057,410336625,19,

%U 359,6851,130289,2475971,47045369,893869691,16983554849,23,527,12159,279809,6436215,148035377,3404823399,78310977089,1801152628695

%N Triangle T(n, k) = prime(n)^k - 2^(2*k-3) with T(n, 1) = prime(n), read by rows.

%C Row sums are: {2, 10, 145, 2758, 176985, 5228360, 435982109, 17927083398, 1883023193293, 435732491457588, ...}

%H G. C. Greubel, <a href="/A153488/b153488.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = prime(n)^k - 2^(2*k - 3) with T(n, 1) = prime(n).

%e Triangle begins as:

%e 2;

%e 3, 7;

%e 5, 23, 117;

%e 7, 47, 335, 2369;

%e 11, 119, 1323, 14609, 160923;

%e 13, 167, 2189, 28529, 371165, 4826297;

%e 17, 287, 4905, 83489, 1419729, 24137057, 410336625;

%e 19, 359, 6851, 130289, 2475971, 47045369, 893869691, 16983554849;

%p A153488:= (n, k) -> `if`(k=1, ithprime(n), ithprime(n)^k - 2^(2*k-3));

%p seq(seq(A153488(n, k), k = 1..n), n = 1..12); # _G. C. Greubel_, Mar 02 2021

%t T[n_, k_]:= T[n,k]= If[k==1, Prime[n], Prime[n]^k -2^(2*k-3)];

%t Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 02 2021 *)

%o (Sage)

%o def A153488(n,k): return nth_prime(n)^k - 2^(2*k-3)*(1- kronecker_delta(k,1))

%o flatten([[A153488(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 02 2021

%o (Magma)

%o A153488:= func< n,k | k eq 1 select NthPrime(n) else NthPrime(n)^k - 2^(2*k-3) >;

%o [A153488(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 02 2021

%K nonn,tabl,easy,less

%O 1,1

%A _Roger L. Bagula_, Dec 27 2008

%E Edited by _G. C. Greubel_, Mar 02 2021