login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(sqrt(1-5x)*sqrt(1-9x)).
11

%I #42 Jan 30 2020 21:29:15

%S 1,7,51,385,2995,23877,194109,1602447,13389075,112935445,959783881,

%T 8206116387,70507643101,608271899515,5265458413875,45711784088145,

%U 397829544860115,3469772959954245,30319709631711225,265383615634224675,2326318766651511945,20419439617056272415

%N Expansion of 1/(sqrt(1-5x)*sqrt(1-9x)).

%C Fifth binomial transform of A000984. In general, the k-th binomial transform of A000984 will have g.f. 1/(sqrt(1-k*x)*sqrt(1-(k+4)*x)) and a(n)=sum{i=0..n, C(n,i)C(2i,i)k^(n-i)}.

%C Diagonal of rational function 1/(1 - (x^2 + 7*x*y + y^2)). - _Gheorghe Coserea_, Aug 03 2018

%H Seiichi Manyama, <a href="/A104454/b104454.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Vincenzo Librandi)

%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

%F G.f.: 1/sqrt(1-14*x+45*x^2).

%F E.g.f.: exp(7x)*BesselI(0, 2x)

%F a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n,k)*binomial(2k,k).

%F D-finite with recurrence: n*a(n) = 7*(2*n-1)*a(n-1) - 45*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 17 2012

%F a(n) ~ 3^(2*n+1)/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 17 2012

%F a(n) = Sum_{k=0..n} 9^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - _Seiichi Manyama_, Apr 22 2019

%F a(n) = Sum_{k=0..floor(n/2)} 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - _Seiichi Manyama_, May 04 2019

%t CoefficientList[Series[1/(Sqrt[1-5x] Sqrt[1-9x]),{x,0,30}],x] (* _Harvey P. Dale_, Apr 11 2012 *)

%o (PARI) x='x+O('x^66); Vec(1/sqrt(1-14*x+45*x^2)) \\ _Joerg Arndt_, May 13 2013

%o (PARI) {a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ _Seiichi Manyama_, Apr 22 2019

%o (PARI) {a(n) = sum(k=0, n\2, 7^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ _Seiichi Manyama_, May 04 2019

%Y Column 7 of A292627.

%Y Cf. A081671, A098409, A098410.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 08 2005