Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #178 Aug 06 2024 04:32:50
%S 1,3,11,45,195,873,3989,18483,86515,408105,1936881,9238023,44241261,
%T 212601015,1024642875,4950790605,23973456915,116312293305,
%U 565280386625,2751474553575,13411044301945,65448142561035,319756851757695
%N a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).
%C a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
%C Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - _Emeric Deutsch_, Jan 30 2004
%C Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - _Philippe Deléham_, Oct 02 2007
%C Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - _N-E. Fahssi_, Feb 05 2008
%C Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - _Gary W. Adamson_, May 17 2009
%C Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - _Gheorghe Coserea_, Jul 29 2018
%C a(n) == 0 (mod 3) if and only if n is in A081606. - _Fabio Visonà_, Aug 03 2023
%H Seiichi Manyama, <a href="/A026375/b026375.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Vincenzo Librandi)
%H Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
%H David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Callan2/callan204.html">A combinatorial interpretation for an identity of Barrucand</a>, JIS 11 (2008) 08.3.4.
%H Shu-Chiuan Chang and Robert Shrock, <a href="https://doi.org/10.1007/s10955-009-9868-0">Structure of the Partition Function and transfer matrices for the Potts model in a magnetic field on lattice strips</a>, J. Stat. Phys. 137 (2009) 667.
%H D. E. Davenport, L. W. Shapiro and L. C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
%H Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.
%H Rui Duarte and António Guedes de Oliveira, <a href="https://www.cmup.pt/sites/default/files/2023-08/GF_LP_corrected_0.pdf">Generating functions of lattice paths</a>, Univ. do Porto (Portugal 2023).
%H Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, <a href="https://arxiv.org/abs/1110.6638">Sato-Tate distributions and Galois endomorphism modules in genus 2</a>, arXiv preprint arXiv:1110.6638 [math.NT], 2011-2012.
%H Francesc Fite and Andrew V. Sutherland, <a href="https://arxiv.org/abs/1203.1476">Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1</a>, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 14 2012
%H J. W. Layman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.
%H Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/4746447/573047">Proof that a(n) == 0 (mod 3) if and only if n is in A081606</a>.
%H László Németh, <a href="https://arxiv.org/abs/1905.13475">Tetrahedron trinomial coefficient transform</a>, arXiv:1905.13475 [math.CO], 2019.
%H H. D. Nguyen and D. Taggart, <a href="https://citeseerx.ist.psu.edu/pdf/8f2f36f22878c984775ed04368b8893879b99458">Mining the OEIS: Ten Experimental Conjectures</a>, 2013. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014
%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%F Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - _Karol A. Penson_, Apr 20 2001
%F This sequence is the binomial transform of A000984. - _John W. Layman_, Aug 11 2000; proved by _Emeric Deutsch_, Oct 26 2002
%F E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - _Michael Somos_, Sep 17 2002
%F G.f.: 1/sqrt(1-6*x+5*x^2). - _Emeric Deutsch_, Oct 26 2002
%F D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - _Emeric Deutsch_, Jan 24 2004
%F From _Emeric Deutsch_, Jan 30 2004: (Start)
%F a(n) = [t^n](1+3*t+t^2)^n;
%F a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
%F a(n) = A026380(2*n-1) (n>0). - _Emeric Deutsch_, Feb 18 2004
%F G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - _Paul Barry_, Jan 06 2009
%F a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - _Paul D. Hanna_, Jul 18 2009
%F a(n) = sum of squares of coefficients of (1-x-x^2)^n. - _Joerg Arndt_, Jul 06 2011
%F a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - _Peter Luschny_, Sep 12 2011
%F a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 08 2012
%F G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 24 2013
%F 0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - _Michael Somos_, May 11 2014
%F a(n) = GegenbauerC(n, -n, -3/2). - _Peter Luschny_, May 09 2016
%F a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - _Seiichi Manyama_, Apr 22 2019
%F a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - _Seiichi Manyama_, May 04 2019
%F a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - _Peter Bala_, Jan 27 2020
%F From _Peter Bala_, Jan 10 2022: (Start)
%F 1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
%F The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
%e G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
%p seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
%p a := n -> simplify(GegenbauerC(n, -n, -3/2)):
%p seq(a(n), n=0..22); # _Peter Luschny_, May 09 2016
%t Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 08 2012 *)
%t (* From _Michael Somos_, May 11 2014: (Start) *)
%t a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
%t a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
%t a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
%t a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
%t (* (End) *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* _Michael Somos_, Sep 09 2002 */
%o (Maxima) A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
%o makelist(A026375(n),n,0,12); /* _Emanuele Munarini_, Mar 02 2011 */
%o (PARI) a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ _Joerg Arndt_, Jul 06 2011
%o (PARI) {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ _Seiichi Manyama_, Apr 22 2019
%o (PARI) {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ _Seiichi Manyama_, May 04 2019
%o (Haskell)
%o a026375 n = a026374 (2 * n) n -- _Reinhard Zumkeller_, Feb 22 2014
%o (GAP) List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # _Muniru A Asiru_, Jul 29 2018
%Y Column 3 of A292627. Column 1 of A110165. Central column of A272866.
%Y Cf. A002893, A084610, A000172, A002212.
%Y First differences are in A085362. Bisection of A026380.
%Y m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).
%K nonn
%O 0,2
%A _Clark Kimberling_
%E Definition simplified by _N. J. A. Sloane_, Feb 16 2012