login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122877
Expansion of (1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^3).
1
0, 1, 2, 7, 20, 65, 206, 679, 2248, 7569, 25690, 88055, 303964, 1056497, 3693158, 12977655, 45813008, 162400609, 577843890, 2063053991, 7388487460, 26535797729, 95552015614, 344897769991, 1247685613272
OFFSET
0,3
COMMENTS
Binomial transform is A071357.
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*2^((k-1)/2)*C((k-1)/2+1)*(1-(-1)^k)/2, where C(n)=A000108(n).
a(n) = (1/Pi)*Integral_{x=1-2*sqrt(2)..1+2*sqrt(2)} x^n*sqrt(-x^2+2x+7)*(x-1)/8.
a(n) = (Sum_{j=0..n+1} binomial(j,n-j+3)*2^(n-j+2)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, May 19 2014
D-finite with recurrence: (n+3)*a(n) + (-3*n-4)*a(n-1) + (-5*n-1)*a(n-2) + 7*(n-2)*a(n-3) = 0. - R. J. Mathar, Feb 23 2015
a(n) ~ (1 + 2*sqrt(2))^(n + 3/2) / (sqrt(Pi) * 2^(5/4) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
MATHEMATICA
CoefficientList[Series[(1 - 2 x - 3 x^2 - (1 - x) Sqrt[1 - 2 x - 7 x^2])/(8 x^3), {x, 0, 24}], x] (* Michael De Vlieger, Apr 17 2020 *)
PROG
(Maxima)
a(n):=sum(binomial(j, n-j+3)*2^(n-j+2)*binomial(n+1, j), j, 0, n+1)/(n+1); /* Vladimir Kruchinin, May 19 2014 */
CROSSREFS
Sequence in context: A000935 A035071 A055891 * A192680 A000150 A318232
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 16 2006
STATUS
approved