OFFSET
0,3
COMMENTS
Binomial transform is A071357.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1723
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*2^((k-1)/2)*C((k-1)/2+1)*(1-(-1)^k)/2, where C(n)=A000108(n).
a(n) = (1/Pi)*Integral_{x=1-2*sqrt(2)..1+2*sqrt(2)} x^n*sqrt(-x^2+2x+7)*(x-1)/8.
a(n) = (Sum_{j=0..n+1} binomial(j,n-j+3)*2^(n-j+2)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, May 19 2014
D-finite with recurrence: (n+3)*a(n) + (-3*n-4)*a(n-1) + (-5*n-1)*a(n-2) + 7*(n-2)*a(n-3) = 0. - R. J. Mathar, Feb 23 2015
a(n) ~ (1 + 2*sqrt(2))^(n + 3/2) / (sqrt(Pi) * 2^(5/4) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
MATHEMATICA
CoefficientList[Series[(1 - 2 x - 3 x^2 - (1 - x) Sqrt[1 - 2 x - 7 x^2])/(8 x^3), {x, 0, 24}], x] (* Michael De Vlieger, Apr 17 2020 *)
PROG
(Maxima)
a(n):=sum(binomial(j, n-j+3)*2^(n-j+2)*binomial(n+1, j), j, 0, n+1)/(n+1); /* Vladimir Kruchinin, May 19 2014 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 16 2006
STATUS
approved