

A000150


Number of dissections of an ngon, rooted at an exterior edge, asymmetric with respect to that edge.
(Formerly M1753 N0696)


7



0, 0, 1, 2, 7, 20, 66, 212, 715, 2424, 8398, 29372, 104006, 371384, 1337220, 4847208, 17678835, 64821680, 238819350, 883629164, 3282060210, 12233125112, 45741281820, 171529777432, 644952073662, 2430973096720, 9183676536076
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Number of Dyck paths of length 2n having an odd number of peaks at even height. Example: a(3)=2 because we have UDU(UD)D and U(UD)DUD, where U=(1,1), D=(1,1) and the peaks at even height are shown between parentheses.  Emeric Deutsch, Nov 13 2004
For n>=1, a(n) is the number of unordered binary trees with n internal nodes in which the left subtree is distinct from the right subtree.  Geoffrey Critzer, Feb 21 2013
Assuming offset 1 this is an analog of A275166: pairs of distinct Catalan numbers with index sum n.  R. J. Mathar, Jul 19 2016


REFERENCES

S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743751
R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 5760, 1958.
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.26).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. SpringerVerlag, 1974.


LINKS

P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. SpringerVerlag, 1974. [Scanned annotated and corrected copy]


FORMULA

Let c(x) = (1sqrt(14*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = 1+x*c(x^2). Then g.f. is (c(x)d(x))/2.
G.f.: (sqrt(14*z^2)  sqrt(14*z)  2*z)/(4*z).  Emeric Deutsch, Nov 13 2004
With c(x) defined as above: g.f. = x*(c(x)^2/2  c(x^2)/2).  Geoffrey Critzer, Feb 21 2013
a(n) = ( 2^(n3)/sqrt(Pi) ) * ( 4*2^n*GAMMA(n+1/2)/GAMMA(n+2) + ((1)^n  1)*GAMMA(n/2)/GAMMA(n/2 + 3/2) ) for n>0.  Mark van Hoeij, Nov 11 2009
Dfinite with recurrence +n*(n+1)*(n2)^2*a(n) 2*n*(2*n5)*(n1)^2*a(n1) 4*n*(n2)^3*a(n2) +8*(2*n5)*(n3)*(n1)^2*a(n3)=0.  R. J. Mathar, Oct 28 2021


MATHEMATICA

nn=20; CoefficientList[Series[x/2(((1(14x)^(1/2))/(2x))^2(1(14x^2)^(1/2))/(2x^2)), {x, 0, nn}], x] (* Geoffrey Critzer, Feb 21 2013 *)


CROSSREFS

a(n) = T(2n+2, n), array T as in A051168, a count of Lyndon words.
A diagonal of the square array described in A051168.


KEYWORD

nonn,nice,easy


AUTHOR



EXTENSIONS



STATUS

approved



