|
|
A001588
|
|
a(n) = a(n-1) + a(n-2) - 1.
(Formerly M2279 N0901)
|
|
4
|
|
|
1, 3, 3, 5, 7, 11, 17, 27, 43, 69, 111, 179, 289, 467, 755, 1221, 1975, 3195, 5169, 8363, 13531, 21893, 35423, 57315, 92737, 150051, 242787, 392837, 635623, 1028459, 1664081, 2692539, 4356619, 7049157, 11405775, 18454931, 29860705, 48315635
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
J. A. H. Hunter and F. D. Parker, Problem B-100, Fib. Quart., 5 (1967), p. 288.
|
|
FORMULA
|
G.f.: (1+x-3x^2)/(1-2*x+x^3). (End)
If n>=4, a(n) = floor(Phi*a(n-1)); Phi = (1 + sqrt(5))/2. - Philippe Deléham, Aug 08 2003
a(n) = F(n-2) + F(n+1) + 1, n >= 0 (where F(n) is the n-th Fibonacci number). - Zerinvary Lajos, Feb 01 2008
a(n) = 1 + (2/5)*((1/2) + (1/2)*sqrt(5))^n*sqrt(5) - (2/5)*sqrt(5)*((1/2) - (1/2)*sqrt(5))^n, with n >= 0. - Paolo P. Lava, Nov 21 2008
|
|
MAPLE
|
with(combinat): seq(fibonacci(n-2) + fibonacci(n+1) + 1, n = 0..35); # Zerinvary Lajos, Feb 01 2008
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|