login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001588 a(n) = a(n-1) + a(n-2) - 1.
(Formerly M2279 N0901)
4
1, 3, 3, 5, 7, 11, 17, 27, 43, 69, 111, 179, 289, 467, 755, 1221, 1975, 3195, 5169, 8363, 13531, 21893, 35423, 57315, 92737, 150051, 242787, 392837, 635623, 1028459, 1664081, 2692539, 4356619, 7049157, 11405775, 18454931, 29860705, 48315635 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Massimiliano Fasi, Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
J. A. H. Hunter and F. D. Parker, Problem B-100, Fib. Quart., 5 (1967), p. 288.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
From Henry Bottomley, Feb 20 2001: (Start)
a(n) = 2*Fibonacci(n) + 1 = A000045(n) + A001611(n).
G.f.: (1+x-3x^2)/(1-2*x+x^3). (End)
If n>=4, a(n) = floor(Phi*a(n-1)); Phi = (1 + sqrt(5))/2. - Philippe Deléham, Aug 08 2003
a(n) = F(n-2) + F(n+1) + 1, n >= 0 (where F(n) is the n-th Fibonacci number). - Zerinvary Lajos, Feb 01 2008
a(n) = 1 + (2/5)*((1/2) + (1/2)*sqrt(5))^n*sqrt(5) - (2/5)*sqrt(5)*((1/2) - (1/2)*sqrt(5))^n, with n >= 0. - Paolo P. Lava, Nov 21 2008
MAPLE
A001588:=-(-1-z+3*z**2)/(z-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation
with(combinat): seq(fibonacci(n-2) + fibonacci(n+1) + 1, n = 0..35); # Zerinvary Lajos, Feb 01 2008
MATHEMATICA
Fibonacci[Range[0, 100]]*2+1 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)
PROG
(PARI) a(n)=2*fibonacci(n)+1 \\ Charles R Greathouse IV, Apr 06 2016
CROSSREFS
Sequence in context: A323529 A328222 A306276 * A107029 A352912 A240180
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 21:21 EST 2023. Contains 367502 sequences. (Running on oeis4.)