login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306276
a(0) = a(1) = a(2) = a(3) = 1; thereafter a(n) = a(n-2) + a(n-3) + a(n-4).
2
1, 1, 1, 1, 3, 3, 5, 7, 11, 15, 23, 33, 49, 71, 105, 153, 225, 329, 483, 707, 1037, 1519, 2227, 3263, 4783, 7009, 10273, 15055, 22065, 32337, 47393, 69457, 101795, 149187, 218645, 320439, 469627, 688271, 1008711, 1478337, 2166609, 3175319, 4653657, 6820265
OFFSET
0,5
COMMENTS
The characteristic equation of this sequence is x^4 = x^2 + x + 1. The characteristic equation of A000930 is x^3 = x^2 + 1 [1], which can be rewritten as x^4 = x^3 + x [2]. By substituting the value of x^3 from equation [1] in equation [2], we get x^4 = (x^2 + 1) + x, which is the characteristic equation for this sequence. Hence the ratio a(n+1)/a(n) has the same limit as the A000930 sequence does, about 1.465571231.
LINKS
Anthony Shannon, François Dubeau, Mine Uysal, and Engin Özkan, A Difference Equation Model of Infectious Disease, Int. J. Bioautomation (2022) Vol. 26, No. 4, 339-352.
FORMULA
G.f.: (x^3 - x - 1)/(x^4 + x^3 + x^2 - 1).
a(n) = a(n-2) + a(n-3) + a(n-4) for n >= 4, a(n) = 1 for n < 4.
Lim_{n->infinity} a(n+1)/a(n) = A092526.
MATHEMATICA
Nest[Append[#, Total@ #[[-4 ;; -2]] ] &, {1, 1, 1, 1}, 40] (* or *)
CoefficientList[Series[(x^3 - x - 1)/(x^4 + x^3 + x^2 - 1), {x, 0, 43}], x] (* Michael De Vlieger, Feb 09 2019 *)
CROSSREFS
Sequence in context: A163646 A323529 A328222 * A001588 A107029 A352912
KEYWORD
nonn
AUTHOR
Joseph Damico, Feb 02 2019
STATUS
approved