OFFSET
1,2
COMMENTS
LINKS
Davis Smith, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = 5*n - 2*A000034(n+1).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = A273669(n) - 1. - Antti Karttunen, Feb 07 2019
G.f.: x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
E.g.f.: 2 + (5*x - 3)*exp(x) + exp(-x). - David Lovler, Sep 07 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (5+sqrt(5))^(3/2)*phi*Pi/(100*sqrt(2)) + log(phi)/(2*sqrt(5)) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
MAPLE
seq(seq(10*i+j, j=[1, 8]), i=0..350);
MATHEMATICA
Select[Range[350], MemberQ[{1, 8}, Mod[#, 10]] &]
PROG
(PARI) for(n=1, 350, if((n%10==1) || (n%10==8), print1(n, ", ")))
(PARI) Vec(x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Davis Smith, Feb 02 2019
STATUS
approved