login
A299979
Lexicographic first sequence of positive integers such that a(n) + a(n+1) has a digit 9, and no term occurs twice.
13
1, 8, 11, 18, 21, 28, 31, 38, 41, 48, 42, 7, 2, 17, 12, 27, 22, 37, 32, 47, 43, 6, 3, 16, 13, 26, 23, 36, 33, 46, 44, 5, 4, 15, 14, 25, 24, 35, 34, 45, 49, 10, 9, 20, 19, 30, 29, 40, 39, 50, 59, 60, 69, 70, 79, 80, 89, 90, 99, 91, 58, 51, 68, 61, 78, 71, 88, 81, 98, 92, 57, 52, 67, 62, 77, 72, 87, 82, 97, 93, 56, 53, 66, 63, 76, 73, 86, 83, 96, 94, 55
OFFSET
1,2
COMMENTS
A permutation of the positive integers.
It happens that from a(50) = 50 on, this sequence coincides with the variant A299969 (which starts at 0 and has nonnegative terms). Indeed the two sequences have the property that the terms a(1..49) resp. A299969(0..49) exactly contain all numbers from 1 to 49, respectively 0 to 49. - M. F. Hasler, Feb 28 2018
LINKS
MATHEMATICA
Nest[Append[#, Block[{k = 1}, While[Nand[FreeQ[#, k], DigitCount[#[[-1]] + k, 10, 9] > 0], k++]; k]] &, {1}, 90] (* Michael De Vlieger, Mar 01 2018 *)
PROG
(PARI) a(n, f=1, d=9, a=1, u=[a])={for(n=2, n, f&&if(f==1, print1(a", "), write(f, n-1, " "a)); for(k=u[1]+1, oo, setsearch(u, k)&&next; setsearch(Set(digits(a+k)), d)&&(a=k)&&break); u=setunion(u, [a]); u[2]==u[1]+1&&u=u[^1]); a}
CROSSREFS
Cf. A299969 (analog with nonnegative terms), A299957 (analog with digit 1), A299971, A299972, ..., A299978 (digit 0, 2, ..., 8).
Sequence in context: A111254 A127271 A118549 * A291663 A306277 A067469
KEYWORD
nonn,base
AUTHOR
M. F. Hasler and Eric Angelini, Feb 22 2018
STATUS
approved