login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306279 Numbers congruent to 3 or 18 mod 22. 1
3, 18, 25, 40, 47, 62, 69, 84, 91, 106, 113, 128, 135, 150, 157, 172, 179, 194, 201, 216, 223, 238, 245, 260, 267, 282, 289, 304, 311, 326, 333, 348, 355, 370, 377, 392, 399, 414, 421, 436, 443, 458, 465, 480, 487, 502, 509, 524, 531, 546, 553, 568 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = 11*n - 6 + 2*(-1)^n.

a(n) = 11*n - A105398(n + 4).

A007310(a(n) + 1) = 11*A007310(n).

From Colin Barker, Feb 07 2019: (Start)

G.f.: x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)).

a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3. (End)

E.g.f.: 4 + (11*x - 6)*exp(x) + 2*exp(-x). - David Lovler, Sep 08 2022

MAPLE

seq(seq(22*i+j, j=[3, 18]), i=0..200);

MATHEMATICA

Select[Range[200], MemberQ[{3, 18}, Mod[#, 22]] &]

Flatten[Table[{22n + 3, 22n + 18}, {n, 0, 43}]] (* Alonso del Arte, Feb 18 2019 *)

PROG

(PARI) for(n=3, 678, if((n%22==3) || (n%22==18), print1(n, ", ")))

(PARI) vector(62, n, 11*n-6+2*(-1)^n)

(PARI) Vec(x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 07 2019

(Scala) (3 to 949 by 22).union(18 to 942 by 22).sorted // Alonso del Arte, Feb 18 2019

CROSSREFS

Cf. A007310, A020639, A042948, A091999, A105398, A131555, A141850, A158459, A273669, A306277, A306289.

Primes in this sequence: A141850.

Sequence in context: A346421 A263578 A048080 * A169598 A202359 A118474

Adjacent sequences:  A306276 A306277 A306278 * A306280 A306281 A306282

KEYWORD

nonn,easy

AUTHOR

Davis Smith, Feb 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 20:40 EDT 2022. Contains 357045 sequences. (Running on oeis4.)