login
A306275
Number of values 0 < k <= n for which there are no k distinct n-th roots of unity that sum to zero.
2
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, 6, 8, 8, 16, 2, 18, 4, 12, 10, 22, 2, 20, 12, 18, 6, 28, 2, 30, 16, 20, 16, 24, 2, 36, 18, 24, 4, 40, 2, 42, 10, 8, 22, 46, 2, 42, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 2, 60, 30, 12, 32, 48, 2, 66, 16, 44, 4, 70, 2, 72
OFFSET
1,3
COMMENTS
In the first 17 terms a(n) = phi(n) except for n=12. For primes a(p) = p - 1.
Also the number of 0's in the n-th row of A103306. - Alois P. Heinz, Feb 03 2019
LINKS
Matt Baker, The Balanced Centrifuge Problem, Math Blog, 2018.
Holly Krieger and Brady Haran, The Centrifuge Problem, Numberphile video (2018)
T. Y. Lam and K. H. Leung, On vanishing sums for roots of unity, arXiv:math/9511209 [math.NT], 1995.
Gary Sivek, On vanishing sums of distinct roots of unity, #A31, Integers 10 (2010), 365-368.
FORMULA
a(n) = #{k in {1,2,...,n} | for all subsets U of {exp(2*Pi*i*m/n)|m=0,1,...,n-1} of size #U=k we have sum(U) != 0 }.
a(n) = 1 + n - A322366(n) for n > 1, a(1) = 1. - Alois P. Heinz, Feb 03 2019
a(n) is even for n >= 3. - Alois P. Heinz, Feb 05 2019
MAPLE
a:= proc(n) option remember; local f, b; f, b:=
map(i-> i[1], ifactors(n)[2]),
proc(m, i) option remember; m=0 or i>0 and
(b(m, i-1) or f[i]<=m and b(m-f[i], i))
end; forget(b); (t-> add(
`if`(b(j, t) and b(n-j, t), 0, 1), j=1..n))(nops(f))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 03 2019
MATHEMATICA
a := Function[{n}, Count[Function[{k}, Fold[And, (#!=0)& /@ RootReduce @* Total /@ Subsets[Exp[2*Pi*I*#/n]& /@ Range[0, n-1], {k}]]] /@ Range[1, n], True] ]
(* Second program: *)
A322366[n_] := A322366[n] = Module[{f, b}, f = FactorInteger[n][[All, 1]]; b[m_, i_] := b[m, i] = m == 0 || i > 0 && (b[m, i - 1] || f[[i]] <= m && b[m - f[[i]], i]); Function[t, Sum[If[b[j, t] && b[n - j, t], 1, 0], {j, 0, n}]][Length[f]]];
a[n_] := If[n == 1, 1, 1 + n - A322366[n]];
Array[a, 100] (* Jean-François Alcover, May 23 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A290077 A277030 A011773 * A322321 A080737 A152455
KEYWORD
nonn
AUTHOR
Florentin Bieder, Feb 03 2019
EXTENSIONS
More terms from Alois P. Heinz, Feb 03 2019
STATUS
approved