login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080737 a(1) = a(2) = 0; for n > 2, the least dimension of a lattice possessing a symmetry of order n. 10
0, 0, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 6, 8, 16, 6, 18, 6, 8, 10, 22, 6, 20, 12, 18, 8, 28, 6, 30, 16, 12, 16, 10, 8, 36, 18, 14, 8, 40, 8, 42, 12, 10, 22, 46, 10, 42, 20, 18, 14, 52, 18, 14, 10, 20, 28, 58, 8, 60, 30, 12, 32, 16, 12, 66, 18, 24, 10, 70, 10, 72, 36, 22, 20, 16, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

J. Bamberg, G. Cairns and D. Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, 110 (March 2003), 202-209.

FORMULA

For n > 2, a(2^r) = 2^(r-1) with r>1, a(p^r) = phi(p^r) with p > 2 prime, r >= 1, where phi is Euler's function A000010; in general if a(Product p_i^e_i) = Sum a(p_i^e_i).

MATHEMATICA

a[1] = a[2] = 0; a[p_?PrimeQ] := a[p] = p-1; a[n_] := a[n] = If[Length[fi = FactorInteger[n]] == 1, EulerPhi[n], Total[a /@ (fi[[All, 1]]^fi[[All, 2]])]]; Table[a[n], {n, 1, 78}] (* Jean-François Alcover, Jun 20 2012 *)

PROG

(PARI) for(n=1, 78, k=0; if(n>1, f=factor(n); k=sum(j=1, matsize(f)[1], eulerphi(f[j, 1]^f[j, 2])); if(f[1, 1]==2&&f[1, 2]==1, k--)); print1(k, ", ")) \\ Klaus Brockhaus, Mar 10 2003

(Haskell)

a080737 n = a080737_list !! (n-1)

a080737_list = 0 : (map f [2..]) where

f n | mod n 4 == 2 = a080737 $ div n 2

| otherwise = a067240 n

-- Reinhard Zumkeller, Jun 13 2012, Jun 11 2012

CROSSREFS

Cf. A080736, A080738, A080739, A080740, A067240, A000010, A141809.

See A152455 for another version.

Sequence in context: A011773 A306275 A322321 * A152455 A293484 A000010

Adjacent sequences: A080734 A080735 A080736 * A080738 A080739 A080740

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 08 2003

EXTENSIONS

More terms from Klaus Brockhaus, Mar 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 00:02 EDT 2023. Contains 361575 sequences. (Running on oeis4.)