login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293484
The number of 7th powers in the multiplicative group modulo n.
5
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 4, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 6, 20, 24, 22, 46, 16, 6, 20, 32, 24, 52, 18, 40, 24, 36, 4, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44, 24, 10, 24, 72, 36, 40, 36
OFFSET
1,3
COMMENTS
The size of the set of numbers j^7 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence (size of the kernel of the isomorphism of the multiplicative group modulo n to the multiplicative group of 7th powers modulo n).
FORMULA
Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(7^e) = 6 for e=1; a(7^e) = 6*7^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4,5,6} (mod 7); a(p^e) = (p-1)*p^(e-1)/7 for p == 1 (mod 7). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319101(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019
MAPLE
A293484 := proc(n)
local r, j;
r := {} ;
for j from 1 to n do
if igcd(j, n)= 1 then
r := r union { modp(j &^ 7, n) } ;
end if;
end do:
nops(r) ;
end proc:
seq(A293484(n), n=1..120) ;
MATHEMATICA
a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^7 - 1, k_ /; Divisible[k, n]];
Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
f[p_, e_] := (p-1)*p^(e-1)/If[Mod[p, 7] == 1, 7, 1]; f[2, e_] := 2^(e-1); f[7, 1] = 6; f[7, e_] := 6*7^(e-2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
CROSSREFS
The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), A293483 (k=6), this sequence (k=7), A293485 (k=8).
Sequence in context: A322321 A080737 A152455 * A000010 A372681 A372677
KEYWORD
nonn,mult
AUTHOR
R. J. Mathar, Oct 10 2017
STATUS
approved