OFFSET
1,3
COMMENTS
The size of the set of numbers j^7 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence (size of the kernel of the isomorphism of the multiplicative group modulo n to the multiplicative group of 7th powers modulo n).
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..10116
Richard J. Mathar, Size of the Set of Residues of Integer Powers of Fixed Exponent, 2017.
FORMULA
Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(7^e) = 6 for e=1; a(7^e) = 6*7^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4,5,6} (mod 7); a(p^e) = (p-1)*p^(e-1)/7 for p == 1 (mod 7). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319101(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019
MAPLE
MATHEMATICA
a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^7 - 1, k_ /; Divisible[k, n]];
Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
f[p_, e_] := (p-1)*p^(e-1)/If[Mod[p, 7] == 1, 7, 1]; f[2, e_] := 2^(e-1); f[7, 1] = 6; f[7, e_] := 6*7^(e-2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
R. J. Mathar, Oct 10 2017
STATUS
approved