

A306273


Numbers k such that k * rev(k) is a square, where rev=A004086, decimal reversal.


5



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 111, 121, 131, 141, 144, 151, 161, 169, 171, 181, 191, 200, 202, 212, 222, 232, 242, 252, 262, 272, 282, 288, 292, 300, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 400, 404, 414, 424, 434, 441, 444, 454, 464, 474, 484, 494, 500, 505, 515, 525, 528, 535
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The first nineteen terms are palindromes (cf. A002113). There are exactly seven different families of integers which together partition the terms of this sequence. See the file "Sequences and families" for more details, comments, formulas and examples.
If w is a term with decimal representation a, then the number n corresponding to the string axa is also a term, where x is a string of k repeated digits 0 where k >= 0. The number n = w*10^(k+m)+w = w*(10^(k+m)+1) where m is the number of digits of w. Then R(n) = R(w)*10^(k+m)+R(w) = R(w)(10^(k+m)+1). Then n*R(n) = w*R(w)(10^(k+m)+1)^2 which is a square since w is a term.
The same argument shows that numbers corresponding to axaxa, axaxaxa, ... are also terms.
For example, since 528 is a term, so are 528528, 5280528, 52800528, 5280052800528, etc.
(End)


REFERENCES

C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY. (1966), pp. 8889.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), p. 168.


LINKS

Eric Weisstein's World of Mathematics, Reversal


EXAMPLE

One example for each family:
family 1 is A002113: 323 * 323 = 323^2;
family 2 is A035090: 169 * 961 = 13^2 * 31^2 = 403^2;
family 3 is A082994: 288 * 882 = (2*144) * (2*441) = 504^2;
family 4 is A002113(j) * 100^k: 75700 * 757 = 7570^2;
family 5 is A035090(j) * 100^k: 44100 * 144 = 2520^2;
family 6 is A082994(j) * 100^k: 8670000 * 768 = 81600^2;
family 7 is A323061(j) * 10^(2k+1): 5476580 * 856745 = 2166110^2.


MAPLE

revdigs:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[i]*10^(i1), i=1..nops(L))
end proc:
filter:= n > issqr(n*revdigs(n)):


MATHEMATICA

Select[Range[0, 535], IntegerQ@ Sqrt[# IntegerReverse@ #] &] (* Michael De Vlieger, Feb 03 2019 *)


PROG

(PARI) isok(n) = issquare(n*fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Feb 04 2019


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



