login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308465
Number of prefix normal palindromes of length n.
0
2, 2, 3, 3, 5, 4, 8, 7, 12, 11, 21, 18, 36, 31, 57, 55, 104, 91, 182, 166, 308, 292, 562, 512, 1009, 928, 1755, 1697, 3247, 2972, 5906, 5555, 10506, 10099, 19542, 18280, 36002, 33895, 64958, 63045, 121887, 114032, 226065, 215377, 412749, 399334, 778196, 735941
OFFSET
1,1
LINKS
Pamela Fleischmann, On Special k-Spectra, k-Locality, and Collapsing Prefix Normal Words, Ph.D. Dissertation, Kiel University (Germany, 2021).
Pamela Fleischmann, Mitja Kulczynski, and Dirk Nowotka, On Collapsing Prefix Normal Words, arXiv:1905.11847 [cs.FL], 2019.
Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, and Danny Bøgsted Poulsen, On Collapsing Prefix Normal Words, Language and Automata Theory and Applications (LATA 2020) LNCS Vol. 12038, Springer, Cham, 412-424.
PROG
(Python)
from itertools import product
def is_prefix_normal(w):
for k in range(1, len(w)+1):
weight0 = w[:k].count("1")
for j in range(1, len(w)-k+1):
weightj = w[j:j+k].count("1")
if weightj > weight0: return False
return True
def bin_pals(digits):
midrange = [[""], ["0", "1"]]
for p in product("01", repeat=digits//2):
left = "".join(p)
for middle in midrange[digits%2]:
yield left+middle+left[::-1]
def a(n):
return sum(is_prefix_normal(w) for w in bin_pals(n))
print([a(n) for n in range(1, 31)]) # Michael S. Branicky, Dec 19 2020
CROSSREFS
Cf. A016116 (numbers of binary palindromes), A194850 (number of prefix normal words)
Sequence in context: A114328 A097366 A139807 * A276119 A167755 A259788
KEYWORD
nonn
AUTHOR
Michel Marcus, May 29 2019
EXTENSIONS
a(31)-a(48) from Michael S. Branicky, Dec 19 2020
STATUS
approved