login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of prefix normal palindromes of length n.
0

%I #20 Jul 02 2021 16:52:58

%S 2,2,3,3,5,4,8,7,12,11,21,18,36,31,57,55,104,91,182,166,308,292,562,

%T 512,1009,928,1755,1697,3247,2972,5906,5555,10506,10099,19542,18280,

%U 36002,33895,64958,63045,121887,114032,226065,215377,412749,399334,778196,735941

%N Number of prefix normal palindromes of length n.

%H Pamela Fleischmann, <a href="https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/macau_derivate_00002273/diss.pdf">On Special k-Spectra, k-Locality, and Collapsing Prefix Normal Words</a>, Ph.D. Dissertation, Kiel University (Germany, 2021).

%H Pamela Fleischmann, Mitja Kulczynski, and Dirk Nowotka, <a href="https://arxiv.org/abs/1905.11847">On Collapsing Prefix Normal Words</a>, arXiv:1905.11847 [cs.FL], 2019.

%H Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, and Danny Bøgsted Poulsen, <a href="https://doi.org/10.1007/978-3-030-40608-0_29">On Collapsing Prefix Normal Words</a>, Language and Automata Theory and Applications (LATA 2020) LNCS Vol. 12038, Springer, Cham, 412-424.

%o (Python)

%o from itertools import product

%o def is_prefix_normal(w):

%o for k in range(1, len(w)+1):

%o weight0 = w[:k].count("1")

%o for j in range(1, len(w)-k+1):

%o weightj = w[j:j+k].count("1")

%o if weightj > weight0: return False

%o return True

%o def bin_pals(digits):

%o midrange = [[""], ["0", "1"]]

%o for p in product("01", repeat=digits//2):

%o left = "".join(p)

%o for middle in midrange[digits%2]:

%o yield left+middle+left[::-1]

%o def a(n):

%o return sum(is_prefix_normal(w) for w in bin_pals(n))

%o print([a(n) for n in range(1, 31)]) # _Michael S. Branicky_, Dec 19 2020

%Y Cf. A016116 (numbers of binary palindromes), A194850 (number of prefix normal words)

%K nonn

%O 1,1

%A _Michel Marcus_, May 29 2019

%E a(31)-a(48) from _Michael S. Branicky_, Dec 19 2020