OFFSET
0,6
COMMENTS
It is conjectured that the triangle is an integer triangle. The triangle and its inverse both appear to have row sums equal to the all 1's sequence.
The triangle is equivalent to the lower semi-matrix R = e_{1,1} + Sum_{i>=2} Sum_{p>=0} ( e_{2^p i, i} ceiling(i/2) - e_{2^p (i+1), i} ceiling(i/2) ) , where e_{i,j} is the matrix unit. The conjecture above is true, deduced from the formula of the matrix. - FUNG Cheok Yin, Sep 12 2022
LINKS
FUNG Cheok Yin, the triangle with the first 61 rows
EXAMPLE
Triangle begins
1;
0, 1;
0, -1, 2;
0, 1, -2, 2;
0, 0, 0, -2, 3;
0, -1, 2, 0, -3, 3;
0, 0, 0, 0, 0, -3, 4;
0, 1, -2, 2, 0, 0, -4, 4;
0, 0, 0, 0, 0, 0, 0, -4, 5;
0, 0, 0, -2, 3, 0, 0, 0, -5, 5;
0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 6;
0, -1, 2, 0, -3, 3, 0, 0, 0, 0, -6, 6;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 7;
Inverse of the triangle begins
1;
0, 1;
0, 1/2, 1/2;
0, 0, 1/2, 1/2;
0, 0, 1/3, 1/3, 1/3;
0, 0, 0, 1/3, 1/3, 1/3;
0, 0, 0, 1/4, 1/4, 1/4, 1/4;
0, 0, 0, 0, 1/4, 1/4, 1/4, 1/4;
0, 0, 0, 0, 1/5, 1/5, 1/5, 1/5, 1/5;
0, 0, 0, 0, 0, 1/5, 1/5, 1/5, 1/5, 1/5;
0, 0, 0, 0, 0, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
MATHEMATICA
rows = 11;
A[n_, k_] := If[k <= n, If[n <= 2 k, 1/Floor[(n+2)/2] , 0], 0];
T = Table[A[n, k], {n, 0, rows-1}, {k, 0, rows-1}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Stefano Spezia, Sep 30 2018 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 29 2007
STATUS
approved