The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304500 Solution (a(n)) of the system of complementary equations defined in Comments. 6
 1, 3, 6, 8, 10, 13, 15, 17, 19, 22, 24, 27, 29, 31, 33, 36, 38, 40, 43, 45, 48, 50, 52, 55, 57, 59, 62, 64, 66, 69, 71, 73, 76, 78, 80, 82, 85, 87, 90, 92, 94, 97, 99, 101, 104, 106, 108, 111, 113, 115, 118, 120, 122, 125, 127, 129, 132, 134, 136, 139, 141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1: a(n) = least new, b(n) = least new, c(n) = a(n) + 2*b(n), where "least new k" means the least positive integer not yet placed. The three sequences partition the positive integers. Empirically, for all n >= 0: 1 <= 3*a(n) - 7*n <= 4, 5 <= 3*b(n) - 7*n <= 8, 4 <= c(n) - 7*n <= 6, LINKS Robert Israel, Table of n, a(n) for n = 0..10000 EXAMPLE a(0) = 1, b(0) = 2; c(0) = 1 + 2*2 = 5, so that a(1) = 3, so that b(1) = 4, so that c(1) = 11. MAPLE S:= {\$1..200}: for n from 0 do if nops(S) < 2 then break fi; a[n]:= min(S); S:= S minus {a[n]}; b[n]:= min(S); c[n]:= a[n]+2*b[n]; S:= S minus {b[n], c[n]} od: seq(A[i]i=0..n-1); # Robert Israel, Jul 30 2018 MATHEMATICA z = 301; mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a = {}; b = {}; c = {}; Do[AppendTo[a, mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]]; AppendTo[b, mex[Flatten[{a, b, c}], Last[a]]]; AppendTo[c, Last[a] + 2*Last[b]], {z}]; Take[a, 100] (* A304500 *) Take[b, 100] (* A304501 *) Take[c, 100] (* A304502 *) Grid[{Join[{"n"}, Range[0, 20]], Join[{"a(n)"}, Take[a, 21]], Join[{"b(n)"}, Take[b, 21]], Join[{"c(n)"}, Take[c, 21]]}, Alignment -> ".", Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}] (* Peter J. C. Moses, Apr 26 2018 *) CROSSREFS Cf. A304497, A304501, A304502. Sequence in context: A323028 A189471 A169863 * A047282 A304497 A189937 Adjacent sequences: A304497 A304498 A304499 * A304501 A304502 A304503 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 22:04 EDT 2024. Contains 375979 sequences. (Running on oeis4.)