The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189937 a(n) = n + [n*s/r] + [n*t/r]; r=1, s=sin(Pi/8), t=cos(Pi/8). 3
 1, 3, 6, 8, 10, 13, 15, 18, 20, 22, 25, 27, 29, 31, 33, 36, 38, 40, 43, 45, 48, 50, 52, 55, 57, 59, 61, 63, 66, 68, 70, 73, 75, 78, 80, 82, 85, 87, 89, 91, 93, 96, 98, 100, 103, 105, 107, 110, 112, 115, 117, 119, 121, 123, 126, 128, 130, 133, 135, 137, 140, 142, 145, 147, 149, 151, 153, 156, 158, 160, 163, 165, 167, 170, 172, 175, 177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that   a(n) = n + [n*s/r] + [n*t/r],   b(n) = n + [n*r/s] + [n*t/s],   c(n) = n + [n*r/t] + [n*s/t], where []=floor. Taking r=1, s=sin(Pi/8), t=cos(Pi/8) gives a=A189937, b=A189938, c=A189939. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A189937:  a(n) = n + [n*sin(Pi/8)] + [n*cos(Pi/8)]. A189938:  b(n) = n + [n*csc(Pi/8)] + [n*cot(Pi/8)]. A189939:  c(n) = n + [n*sec(Pi/8)] + [n*tan(Pi/8)]. MATHEMATICA r=1; s=Sin[Pi/8]; t=Cos[Pi/8]; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[a[n], {n, 1, 120}]  (*A189937*) Table[b[n], {n, 1, 120}]  (*A189938*) Table[c[n], {n, 1, 120}]  (*A189939*) PROG (PARI) for(n=1, 100, print1(n + floor(n*sin(Pi/8)) + floor(n*cos(Pi/8)), ", ")) \\ G. C. Greubel, Jan 13 2018 (MAGMA) C := ComplexField(); [n + Floor(n*Sin(Pi(C)/8)) + Floor(n*Cos(Pi(C)/8)): n in [1..100]]; // G. C. Greubel, Jan 13 2018 CROSSREFS Cf. A189938, A189939. Sequence in context: A304500 A047282 A304497 * A190325 A064437 A287180 Adjacent sequences:  A189934 A189935 A189936 * A189938 A189939 A189940 KEYWORD nonn AUTHOR Clark Kimberling, May 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 19:02 EST 2021. Contains 349424 sequences. (Running on oeis4.)