login
A189938
a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sin(Pi/8), t=cos(Pi/8).
3
5, 11, 17, 23, 30, 35, 41, 47, 53, 60, 65, 71, 77, 83, 90, 95, 102, 108, 113, 120, 125, 132, 138, 143, 150, 155, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 277, 282, 288, 295, 300, 307, 312, 318, 325, 330, 337, 342, 349, 355, 360, 367, 373, 379, 385, 390, 397, 403, 409, 415, 420
OFFSET
1,1
COMMENTS
See A189937.
LINKS
FORMULA
A189937: a(n) = n + [n*sin(pi/8)] + [n*cos(pi/8)].
A189938: b(n) = n + [n*csc(pi/8)] + [n*cot(pi/8)].
A189939: c(n) = n + [n*sec(pi/8)] + [n*tan(pi/8)].
MATHEMATICA
r=1; s=Sin[Pi/8]; t=Cos[Pi/8];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (*A189937*)
Table[b[n], {n, 1, 120}] (*A189938*)
Table[c[n], {n, 1, 120}] (*A189939*)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/sin(Pi/8)) + floor(n/tan(Pi/8)), ", ")) \\ G. C. Greubel, Jan 13 2018
(Magma) C<i> := ComplexField(); [n + Floor(n/Sin(Pi(C)/8)) + Floor(n/Tan(Pi(C)/8)): n in [1..100]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 01 2011
STATUS
approved