login
A189939
a(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(Pi/8), t=cos(Pi/8).
3
2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26, 28, 32, 34, 37, 39, 42, 44, 46, 49, 51, 54, 56, 58, 62, 64, 67, 69, 72, 74, 76, 79, 81, 84, 86, 88, 92, 94, 97, 99, 101, 104, 106, 109, 111, 114, 116, 118, 122, 124, 127, 129, 131, 134, 136, 139, 141, 144, 146, 148, 152, 154, 157, 159, 161, 164, 166, 169, 171, 173, 176, 178, 182, 184, 187, 189, 191
OFFSET
1,1
COMMENTS
See A189937.
LINKS
FORMULA
A189937: a(n) = n + [n*sin(Pi/8)] + [n*cos(Pi/8)].
A189938: b(n) = n + [n*csc(Pi/8)] + [n*cot(Pi/8)].
A189939: c(n) = n + [n*sec(Pi/8)] + [n*tan(Pi/8)].
MATHEMATICA
r=1; s=Sin[Pi/8]; t=Cos[Pi/8];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (*A189937*)
Table[b[n], {n, 1, 120}] (*A189938*)
Table[c[n], {n, 1, 120}] (*A189939*)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/cos(Pi/8)) + floor(n*tan(Pi/8)), ", ")) \\ G. C. Greubel, Jan 13 2018
(Magma) C<i> := ComplexField(); [n + Floor(n/Cos(Pi(C)/8)) + Floor(n*Tan(Pi(C)/8)): n in [1..100]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
Sequence in context: A330085 A175884 A003151 * A219637 A189470 A189681
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 01 2011
STATUS
approved