login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064437 a(1)=1, a(n) = a(n-1) + 3 if n is already in the sequence, a(n) = a(n-1) + 2 otherwise. 13
1, 3, 6, 8, 10, 13, 15, 18, 20, 23, 25, 27, 30, 32, 35, 37, 39, 42, 44, 47, 49, 51, 54, 56, 59, 61, 64, 66, 68, 71, 73, 76, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 122, 124, 126, 129, 131, 134, 136, 138, 141, 143, 146, 148, 150 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
More generally let (x,y,z) be 3 positive integers and a(n) be the sequence a(1)=x, a(n) = a(n-1) + y if n is already in the sequence, a(n) = a(n-1) + z otherwise. Then it seems that a(n) is asymptotic to r*n where r is the largest positive root of q^2 = z*q + z - y.
Example: (x,y,z) = (2, 1, 2) gives A004956(n), (x,y,z) = (1, 2, 3) gives A007066(n). The present sequence is the case (1, 3, 2).
LINKS
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
FORMULA
a(n) = ceiling((1+sqrt(2))*(n-1)+C) where C = 1/(2+sqrt(2)) = 0.292893218813...
EXAMPLE
a(6)=13 hence a(13) = a(12) + 3 = 27 + 3 = 30.
MAPLE
A064437:= n -> ceil((1+sqrt(2))*(n-1)+1/(2+sqrt(2))):
seq(A064437(n), n=1..100); # Robert Israel, May 19 2014
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n-1] + If[MemberQ[Array[a, n-1], n], 3, 2];
Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *)
PROG
(PARI) an=vector(100); an[1]=1; a(n)=if(n<0, 0, an[n]);
x=1; y=3; z=2; an[1]=x; for(n=2, 100, an[n]=if(setsearch(Set(vector(n- 1, i, a(i))), n), a(n-1)+y, a(n-1)+z));
an
(Haskell)
a064437 n = a064437_list !! (n-1)
a064437_list = 1 : f 2 [1] where
f x zs@(z:_) = y : f (x + 1) (y : zs) where
y = if x `elem` zs then z + 3 else z + 2
-- Reinhard Zumkeller, Sep 26 2014
CROSSREFS
Cf. A004956, A007066, A026351, A079000. Apart from start, equals A080652 + 1.
Sequence in context: A304497 A189937 A190325 * A287180 A072149 A001066
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 14 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 21:41 EDT 2024. Contains 375765 sequences. (Running on oeis4.)