|
|
A064437
|
|
a(1)=1, a(n) = a(n-1) + 3 if n is already in the sequence, a(n) = a(n-1) + 2 otherwise.
|
|
13
|
|
|
1, 3, 6, 8, 10, 13, 15, 18, 20, 23, 25, 27, 30, 32, 35, 37, 39, 42, 44, 47, 49, 51, 54, 56, 59, 61, 64, 66, 68, 71, 73, 76, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 122, 124, 126, 129, 131, 134, 136, 138, 141, 143, 146, 148, 150
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
More generally let (x,y,z) be 3 positive integers and a(n) be the sequence a(1)=x, a(n) = a(n-1) + y if n is already in the sequence, a(n) = a(n-1) + z otherwise. Then it seems that a(n) is asymptotic to r*n where r is the largest positive root of q^2 = z*q + z - y.
Example: (x,y,z) = (2, 1, 2) gives A004956(n), (x,y,z) = (1, 2, 3) gives A007066(n). The present sequence is the case (1, 3, 2).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = ceiling((1+sqrt(2))*(n-1)+C) where C = 1/(2+sqrt(2)) = 0.292893218813...
|
|
EXAMPLE
|
a(6)=13 hence a(13) = a(12) + 3 = 27 + 3 = 30.
|
|
MAPLE
|
A064437:= n -> ceil((1+sqrt(2))*(n-1)+1/(2+sqrt(2))):
|
|
MATHEMATICA
|
a[1] = 1; a[n_] := a[n] = a[n-1] + If[MemberQ[Array[a, n-1], n], 3, 2];
|
|
PROG
|
(PARI) an=vector(100); an[1]=1; a(n)=if(n<0, 0, an[n]);
x=1; y=3; z=2; an[1]=x; for(n=2, 100, an[n]=if(setsearch(Set(vector(n- 1, i, a(i))), n), a(n-1)+y, a(n-1)+z));
an
(Haskell)
a064437 n = a064437_list !! (n-1)
a064437_list = 1 : f 2 [1] where
f x zs@(z:_) = y : f (x + 1) (y : zs) where
y = if x `elem` zs then z + 3 else z + 2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|