login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080652
a(1)=2; for n>1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.
8
2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 96, 99, 101, 104, 106, 108, 111, 113, 116, 118, 121, 123, 125, 128, 130, 133, 135, 137, 140, 142, 145
OFFSET
1,1
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
FORMULA
a(n) = floor(n*r + 1/(1+r)) where r = 1+sqrt(2).
MATHEMATICA
a[1] = 2;
a[n_] := a[n] = If[MemberQ[Array[a, n-1], n], a[n-1] + 3, a[n-1] + 2];
Array[a, 60] (* Jean-François Alcover, Oct 01 2018 *)
Table[Floor[n (1 + Sqrt[2]) + 1 / (1 + (1 + Sqrt[2]))], {n, 60}] (* Vincenzo Librandi, Oct 02 2018 *)
PROG
(PARI) a(n) = my(r=sqrt(2)+1); (r*(r+1)*n+1)\(r+1); \\ Altug Alkan, Oct 01 2018
(Magma) [Floor(n*(1+Sqrt(2)) + 1/(1+(1+Sqrt(2)))): n in [1..60]]; // Vincenzo Librandi, Oct 02 2018
CROSSREFS
Cf. A080455-A080458, A080036, A080037. Apart from start, equals A064437 - 1.
Sequence in context: A184007 A003256 A029901 * A187344 A342741 A260480
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 23 2003
STATUS
approved