login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080652 a(1)=2; for n>1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise. 8
2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 96, 99, 101, 104, 106, 108, 111, 113, 116, 118, 121, 123, 125, 128, 130, 133, 135, 137, 140, 142, 145 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
FORMULA
a(n) = floor(n*r + 1/(1+r)) where r = 1+sqrt(2).
MATHEMATICA
a[1] = 2;
a[n_] := a[n] = If[MemberQ[Array[a, n-1], n], a[n-1] + 3, a[n-1] + 2];
Array[a, 60] (* Jean-François Alcover, Oct 01 2018 *)
Table[Floor[n (1 + Sqrt[2]) + 1 / (1 + (1 + Sqrt[2]))], {n, 60}] (* Vincenzo Librandi, Oct 02 2018 *)
PROG
(PARI) a(n) = my(r=sqrt(2)+1); (r*(r+1)*n+1)\(r+1); \\ Altug Alkan, Oct 01 2018
(Magma) [Floor(n*(1+Sqrt(2)) + 1/(1+(1+Sqrt(2)))): n in [1..60]]; // Vincenzo Librandi, Oct 02 2018
CROSSREFS
Cf. A080455-A080458, A080036, A080037. Apart from start, equals A064437 - 1.
Sequence in context: A184007 A003256 A029901 * A187344 A342741 A260480
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 23 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:28 EST 2023. Contains 367616 sequences. (Running on oeis4.)