Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:09
%S 2,5,7,9,12,14,17,19,22,24,26,29,31,34,36,38,41,43,46,48,50,53,55,58,
%T 60,63,65,67,70,72,75,77,79,82,84,87,89,92,94,96,99,101,104,106,108,
%U 111,113,116,118,121,123,125,128,130,133,135,137,140,142,145
%N a(1)=2; for n>1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise.
%H Vincenzo Librandi, <a href="/A080652/b080652.txt">Table of n, a(n) for n = 1..5000</a>
%H B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Cloitre/cloitre2.html">Numerical analogues of Aronson's sequence</a>, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
%H B. Cloitre, N. J. A. Sloane and M. J. Vandermast, <a href="https://arxiv.org/abs/math/0305308">Numerical analogues of Aronson's sequence</a>, arXiv:math/0305308 [math.NT], 2003.
%F a(n) = floor(n*r + 1/(1+r)) where r = 1+sqrt(2).
%t a[1] = 2;
%t a[n_] := a[n] = If[MemberQ[Array[a, n-1], n], a[n-1] + 3, a[n-1] + 2];
%t Array[a, 60] (* _Jean-François Alcover_, Oct 01 2018 *)
%t Table[Floor[n (1 + Sqrt[2]) + 1 / (1 + (1 + Sqrt[2]))], {n, 60}] (* _Vincenzo Librandi_, Oct 02 2018 *)
%o (PARI) a(n) = my(r=sqrt(2)+1); (r*(r+1)*n+1)\(r+1); \\ _Altug Alkan_, Oct 01 2018
%o (Magma) [Floor(n*(1+Sqrt(2)) + 1/(1+(1+Sqrt(2)))): n in [1..60]]; // _Vincenzo Librandi_, Oct 02 2018
%Y Cf. A080455-A080458, A080036, A080037. Apart from start, equals A064437 - 1.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Mar 23 2003