The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080653 a(1) = 2; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) such that the condition "a(a(n)) is always even" is satisfied. 7
 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 95, 96, 97 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also defined by: a(n) = smallest positive number > a(n-1) such that the condition "n is in sequence if and only if a(n) is odd" is false (cf. A079000); that is, the condition "either n is not in the sequence and a(n) is odd or n is in the sequence and a(n) is even" is satisfied. If prefixed with a(0) = 0, can be defined by: a(n) = smallest nonnegative number > a(n-1) such that the condition "n is in sequence only if a(n) is even" is satisfied. REFERENCES Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585 LINKS B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2. B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308) MATHEMATICA (* b = A007378 *) b[n_] := b[n] = Which[n == 2, 3, n == 3, 4, EvenQ[n], 2 b[n/2], True, b[(n-1)/2+1]+b[(n-1)/2]]; a = 2; a[n_] := b[n+2]-2; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 05 2016 *) CROSSREFS Equals A007378 - 2. A007378, A079905, A080637, A080653 are all essentially the same sequence. Cf. A169956, A169957. Sequence in context: A114318 A169956 A035500 * A115836 A176554 A284895 Adjacent sequences:  A080650 A080651 A080652 * A080654 A080655 A080656 KEYWORD easy,nonn,nice AUTHOR Matthew Vandermast, Mar 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 16:21 EST 2021. Contains 340246 sequences. (Running on oeis4.)