login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A317451
a(n) = (n*A003500(n) - A231896(n))/2.
5
0, 2, 16, 92, 464, 2182, 9824, 42936, 183648, 772746, 3209968, 13196564, 53791408, 217700110, 875718080, 3504277360, 13959102912, 55383875346, 218965651152, 862983998924, 3391602170512, 13295446717334, 51999641009696, 202948920530728, 790569797639456, 3074179492922778
OFFSET
0,2
COMMENTS
Derivative of Chebyshev second kind polynomials evaluated at 2.
REFERENCES
R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
LINKS
Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind
FORMULA
From Colin Barker, Aug 06 2018: (Start)
G.f.: 2*x / (1 - 4*x + x^2)^2.
a(n) = (sqrt(3)*((2-sqrt(3))^n - (2+sqrt(3))^n) + 3*((2-sqrt(3))^(1+n) + (2+sqrt(3))^(1+n))*n) / 18.
a(n) = 8*a(n-1) - 18*a(n-2) + 8*a(n-3) - a(n-4) for n>3.
(End)
MATHEMATICA
CoefficientList[ Series[2 x/(x^2 - 4x + 1)^2, {x, 0, 25}], x] (* Robert G. Wilson v, Aug 07 2018 *)
PROG
(PARI) a(n) = subst(deriv(polchebyshev(n, 2)), x, 2); \\ Michel Marcus, Jul 29 2018.
(PARI) concat(0, Vec(2*x / (1 - 4*x + x^2)^2 + O(x^40))) \\ Colin Barker, Aug 06 2018
CROSSREFS
Cf. A003500, A231896, A133156 (Chebyshev polynomials of the second kind).
Sequence in context: A208008 A208550 A214824 * A220324 A208002 A220932
KEYWORD
nonn,easy
AUTHOR
Rigoberto Florez, Jul 28 2018
STATUS
approved