The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231896 a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 4. 3
 0, 4, 16, 60, 224, 836, 3120, 11644, 43456, 162180, 605264, 2258876, 8430240, 31462084, 117418096, 438210300, 1635423104, 6103482116, 22778505360, 85010539324, 317263651936, 1184044068420, 4418912621744, 16491606418556, 61547513052480, 229698445791364 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of domino tilings of a 2 X (2n-1) projective plane. Numbers m such that 3*m^2+16 is a square. [Bruno Berselli, Dec 16 2014] LINKS Colin Barker, Table of n, a(n) for n = 0..1000 W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013. Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. Index entries for linear recurrences with constant coefficients, signature (4,-1). FORMULA G.f.: 4*x/(1-4*x+x^2). - Philippe Deléham, Nov 19 2013 a(n) = ((2*(-(2-sqrt(3))^n+(2+sqrt(3))^n)))/sqrt(3). - Colin Barker, Oct 12 2015 MATHEMATICA LinearRecurrence[{4, -1}, {0, 4}, 30] (* Harvey P. Dale, Oct 01 2015 *) PROG (PARI) concat(0, Vec(4*x/(1-4*x+x^2) + O(x^40))) \\ Colin Barker, Oct 12 2015 CROSSREFS Equals 4*A001353. Sequence in context: A267928 A269532 A269673 * A128650 A072335 A081161 Adjacent sequences: A231893 A231894 A231895 * A231897 A231898 A231899 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 18 2013 EXTENSIONS More terms and other edits by M. F. Hasler, Nov 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 03:28 EDT 2024. Contains 371696 sequences. (Running on oeis4.)