

A231896


a(n) = 4*a(n1)  a(n2) with a(0) = 0, a(1) = 4.


3



0, 4, 16, 60, 224, 836, 3120, 11644, 43456, 162180, 605264, 2258876, 8430240, 31462084, 117418096, 438210300, 1635423104, 6103482116, 22778505360, 85010539324, 317263651936, 1184044068420, 4418912621744, 16491606418556, 61547513052480, 229698445791364
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of domino tilings of a 2 X (2n1) projective plane.
Numbers m such that 3*m^2+16 is a square. [Bruno Berselli, Dec 16 2014]


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013.
Index entries for linear recurrences with constant coefficients, signature (4,1).


FORMULA

G.f.: 4*x/(14*x+x^2).  Philippe Deléham, Nov 19 2013
a(n) = ((2*((2sqrt(3))^n+(2+sqrt(3))^n)))/sqrt(3).  Colin Barker, Oct 12 2015


MATHEMATICA

LinearRecurrence[{4, 1}, {0, 4}, 30] (* Harvey P. Dale, Oct 01 2015 *)


PROG

(PARI) concat(0, Vec(4*x/(14*x+x^2) + O(x^40))) \\ Colin Barker, Oct 12 2015


CROSSREFS

Equals 4*A001353.
Sequence in context: A267928 A269532 A269673 * A128650 A072335 A081161
Adjacent sequences: A231893 A231894 A231895 * A231897 A231898 A231899


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Nov 18 2013


EXTENSIONS

More terms and other edits by M. F. Hasler, Nov 20 2013


STATUS

approved



