|
|
A220324
|
|
Equals two maps: number of n X 3 binary arrays indicating the locations of corresponding elements equal to exactly two of their horizontal and antidiagonal neighbors in a random 0..1 n X 3 array.
|
|
1
|
|
|
2, 16, 92, 508, 2788, 15316, 84196, 462940, 2545492, 13996468, 76959844, 423164812, 2326777444, 12793817140, 70346976484, 386803802332, 2126845944052, 11694491219668, 64302318307108, 353567167818892, 1944093859291588
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 7*a(n-1) - 9*a(n-2) + 3*a(n-3) + 6*a(n-4).
Empirical g.f.: 2*x*(1 + x - x^2 + x^3) / (1 - 7*x + 9*x^2 - 3*x^3 - 6*x^4). - Colin Barker, Jul 31 2018
|
|
EXAMPLE
|
Some solutions for n=3:
..0..1..1....0..1..1....0..1..1....0..0..1....0..0..0....0..0..1....0..0..0
..1..0..1....0..1..0....0..0..0....0..1..1....1..1..0....1..0..1....0..0..1
..0..0..0....1..1..0....0..0..0....0..0..0....1..1..0....0..0..0....0..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|