The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317450 a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3). 0
 1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Discriminant of Pell polynomials. Pell polynomials are defined as P(0)=0, P(1)=1 and P(n)=2xP(n-1)+P(n-2) for n>1. LINKS Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018. Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018. R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2. R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14. Eric Weisstein's World of Mathematics, Discriminant Eric Weisstein's World of Mathematics, Pell Polynomial MATHEMATICA Array[(-1)^((#-2)*(#-1)/2)* 2^((#-1)^2)*#^(#-3)&, 15] CROSSREFS Cf.  A006645,  A001629, A001871, A006645, A007701, A045618, A045925,  A093967, A193678, A317404, A317405, A317408, A317451, A318184, A318197. Essentially the same as A086804. Sequence in context: A159389 A291828 A086804 * A121366 A101800 A208148 Adjacent sequences:  A317447 A317448 A317449 * A317451 A317452 A317453 KEYWORD sign AUTHOR Rigoberto Florez, Aug 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 04:06 EDT 2020. Contains 337441 sequences. (Running on oeis4.)