OFFSET
1,3
COMMENTS
Discriminant of Pell polynomials.
Pell polynomials are defined as P(0)=0, P(1)=1 and P(n)=2xP(n-1)+P(n-2) for n>1.
LINKS
Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Eric Weisstein's World of Mathematics, Discriminant
Eric Weisstein's World of Mathematics, Pell Polynomial
MATHEMATICA
Array[(-1)^((#-2)*(#-1)/2)* 2^((#-1)^2)*#^(#-3)&, 15]
CROSSREFS
KEYWORD
sign
AUTHOR
Rigoberto Florez, Aug 26 2018
STATUS
approved