login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330251
Numbers k such that phi(k) = phi(k+3), where phi (A000010) is Euler's totient function.
1
3, 5, 8720288051472, 9134280520365, 41544070492925, 42466684755492, 51363581614342, 68616494581632, 113312918293575, 210911076210835, 215517565688425, 294988451482725, 383617980270525, 432759876053505, 442863123838135, 532068058516992, 892813363927485, 923102743748185, 929531173876305
OFFSET
1,1
COMMENTS
10^15 < a(20) <= 1089641067389872.
Also terms: 1248817919303952, 1332436545865422, 1394926716616125, 1868522795664525, 1950445682260072.
a(4) and a(9) appear in Kevin Ford's paper.
LINKS
Kevin Ford, Solutions of phi(n)=phi(n+k) and sigma(n)=sigma(n+k), arXiv:2002.12155 [math.NT], 2020.
S. W. Graham, J. J. Holt, and C. Pomerance, On the solutions to phi(n) = phi(n+k), Number Theory in Progress, K. Gyory, H. Iwaniec, and J. Urbanowicz, eds., vol. 2, de Gruyter, Berlin and New York, 1999, pp. 867-882.
MATHEMATICA
Select[Range[100000], EulerPhi[#] == EulerPhi[# + 3] &] (* Alonso del Arte, Mar 01 2020 *)
PROG
(PARI) isok(k) = eulerphi(k) == eulerphi(k+3); \\ Michel Marcus, Feb 29 2020
KEYWORD
nonn
AUTHOR
Michel Marcus and Giovanni Resta, Feb 29 2020
STATUS
approved