login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329824
Number of length-n binary words having no palindromes of length > 5 as contiguous subwords.
1
2, 4, 8, 16, 32, 56, 84, 120, 164, 226, 312, 428, 584, 802, 1096, 1500, 2056, 2816, 3852, 5280, 7228, 9892, 13548, 18554, 25396, 34788, 47636, 65212, 89296, 122278, 167404, 229252, 313932, 429830, 588556, 805910, 1103420, 1510924, 2068960, 2832944, 3879100
OFFSET
1,1
COMMENTS
a(n) is asymptotically equal to c*alpha^n, where alpha = 1.36927381628918060784... is the positive real zero of the equation X^10-3X^4-2X^3-2X^2-2X-1, and c = 9.8315779... .
LINKS
G. Fici and L. Q. Zamboni, On the least number of palindromes contained in an infinite word, Theor. Comput. Sci. 481 (2013) 1-8.
Lukas Fleischer, Jeffrey Shallit, Words With Few Palindromes, Revisited, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.
FORMULA
a(n) = 3a(n-6) + 2a(n-7) + 2a(n-8) + 2a(n-9) + a(n-10) for n >= 20.
G.f.: 2*x*(1 + x)*(1 + x + x^2)*(1 + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 8*x^6 + 14*x^7 + 12*x^8 + 15*x^9 + 11*x^10 + 8*x^11 + 5*x^12 + 4*x^13 + 2*x^15) / (1 - 3*x^6 - 2*x^7 - 2*x^8 - 2*x^9 - x^10). - Colin Barker, Nov 22 2019
EXAMPLE
For n=6 the 8 strings NOT enumerated are 000000, 001100, 010010, 011110, and their binary complements.
MATHEMATICA
Rest@ CoefficientList[Series[2 x (1 + x) (1 + x + x^2) (1 + 2 x^2 + 3 x^3 + 6 x^4 + 8 x^5 + 8 x^6 + 14 x^7 + 12 x^8 + 15 x^9 + 11 x^10 + 8 x^11 + 5 x^12 + 4 x^13 + 2 x^15)/(1 - 3 x^6 - 2 x^7 - 2 x^8 - 2 x^9 - x^10), {x, 0, 41}], x] (* Michael De Vlieger, Nov 22 2019 *)
PROG
(PARI) Vec(2*x*(1 + x)*(1 + x + x^2)*(1 + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 8*x^6 + 14*x^7 + 12*x^8 + 15*x^9 + 11*x^10 + 8*x^11 + 5*x^12 + 4*x^13 + 2*x^15) / (1 - 3*x^6 - 2*x^7 - 2*x^8 - 2*x^9 - x^10) + O(x^40)) \\ Colin Barker, Nov 22 2019
CROSSREFS
Sequence in context: A374733 A231388 A330012 * A229614 A230216 A326081
KEYWORD
nonn,easy
AUTHOR
Jeffrey Shallit, Nov 22 2019
STATUS
approved