login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121943 Numbers k such that the central binomial coefficient C(2k,k) is divisible by k^2. 7
1, 924, 1287, 2002, 2145, 3366, 3640, 3740, 4199, 6006, 6118, 6552, 7480, 7920, 8580, 8855, 10465, 10920, 11385, 11592, 12285, 12325, 12441, 12540, 12597, 12920, 13224, 13398, 13566, 15080, 15834, 18270, 18354, 18837, 18972, 19227, 23562, 23870, 25641, 25740 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, numbers n such that the n-th Catalan or Segner number C(2n,n)/(n+1) is divisible by n^2. - Lucian Craciun, Feb 09 2017

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

MATHEMATICA

Select[Table[n, {n, 20000}], IntegerQ[Binomial[2#, # ]/#^2] &]

PROG

(Python)

from __future__ import division

A121943_list, b = [], 2

for n in range(1, 10**5):

    if not b % (n**2):

        A121943_list.append(n)

    b = b*(4*n+2)//(n+1) # Chai Wah Wu, Mar 27 2016

(PARI) lista(nn) = {for(n=1, nn, if(Mod(binomial(2*n, n), n^2) == 0, print1(n, ", "))); } \\ Altug Alkan, Mar 27 2016

CROSSREFS

Cf. A000108, A000984, A014847, A282163, A282346, A283073, A283074, A282672.

Sequence in context: A268849 A177810 A119396 * A024750 A024758 A245859

Adjacent sequences:  A121940 A121941 A121942 * A121944 A121945 A121946

KEYWORD

nonn

AUTHOR

Tanya Khovanova, Sep 03 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 19:46 EDT 2017. Contains 286926 sequences.